Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, February 20, 2013

Longitudinal Plasticity Across the Neural Axis in Acute Stroke

This was done in the first 3 months so the results can't really be separated from spontaneous recovery.
http://nnr.sagepub.com/content/27/3/219.abstract?etoc

Abstract

Background. With the advent of novel brain stimulation techniques aimed at improving functional outcome, understanding poststroke plasticity becomes critical for the appropriate selection of patients and optimal timing to introduce neuromodulatory interventions. Objective. To better define the temporal evolution of central and peripheral neuroplastic changes in the first 3 months after stroke and their clinical implications. Methods. Transcranial magnetic stimulation, peripheral nerve excitability, and clinical assessments were undertaken longitudinally in 31 acute stroke patients, comprising a total of 384 clinical studies. Results. During the hyperacute phase (&lt7 days), short-interval intracortical inhibition (SICI) was significantly reduced in lesioned (4.3% ± 1.3%) and contralesional hemispheres (3.6% ± 1.9%) compared with controls (11.4% ± 1.3%, P = .001). There were also significant alterations in accommodative properties of motor axons in the affected limb. At follow-up, SICI remained suppressed in both hemispheres in the context of significant clinical improvement. Conclusion. Simultaneous assessment of central and peripheral motor pathways has identified bilateral plastic changes that develop throughout the neural axis in acute stroke patients. It is proposed that these changes represent an adaptive response and that the persistent bihemispheric reduction in SICI may act to promote stroke recovery through cortical reorganization.

No comments:

Post a Comment