Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, December 30, 2014

Noninvasive intranasal stem cells bypass the blood-brain barrier to target the brain to treat Parkinson's disease, stroke, MS, brain tumors, cerebral ischemia, Alzheimer's and other CNS disorders

What clinical trial is your doctor proposing to see if this would help survivors?
http://www.jnsci.org/index.php?journal=nsci&page=article&op=view&path[]=23&path[]=98

William H. Frey II


Center for Memory & Aging (Alzheimer's Research Center), Regions Hospital, 640 Jackson St., St. Paul, MN 55101, Department of Pharmaceutics, Neurology and Neuroscience, University of Minnesota, USA.

Together with my collaborators in Germany, especially Lusine Danielyan M.D., we discovered and patented (1) that therapeutic cells, including adult stem cells and genetically-engineered cells, can be non-invasively delivered to the CNS using the noninvasive intranasal delivery method that I developed (2). The first of our scientific papers on this new discovery describes this successful method of delivery and proprietary formulations that enhance delivery (3).  The second of our papers describes the successful treatment of Parkinson's disease in an animal model with intranasal adult bone marrow derived mesenchymal stem cells (4).
Intranasal stem cells bypass the blood-brain barrier to target the brain by traveling extracellularly along the olfactory neural pathway with minimal delivery to other organs.  Once in the brain, adult stem cells target the damaged areas of the brain specifically to treat the underlying disease (4).  Researchers at University Medical Center Utrecht in the Netherlands have demonstrated the effectiveness of intranasal stem cell treatment technology in an animal model of neonatal cerebral ischemia (5) and also in animals with neonatal brain damage (6) and subarachnoid hemorrhage (6a).  
Researchers at Emory University have used our intranasal stem cell treatment successfully in an animal model of stroke (7), and researchers at Uppsala University in Sweden have demonstrated that intranasal T regulatory cell therapy delivered and targeted the cells to the brain and efficiently suppressed ongoing inflammation in an EAE model of multiple sclerosis leading to reduced disease symptoms (8).  Intranasal adult neural stem cells have also been shown to improve the EAE model of MS (9) as have intranasal mesenchymal stromal cells (10).  
Other researchers have reported that intranasal stem cells target and treat brain tumors (11, 12).  This intranasal delivery, targeting and treatment technology can make stem cell treatments practical for CNS disorders by eliminating the need for invasive neurosurgical implantation of cells and by eliminating the need for intravenous delivery that disperses cells throughout the body resulting in unwanted systemic exposure.  This delivery and treatment method can facilitate the development of stem cell and genetically-engineered cell therapies for Parkinson's, PSP, Huntington's, Alzheimer's, MS, epilepsy, stroke, neonatal ischemia, brain tumors, traumatic brain injury (TBI), spinal cord (SCI) injury, etc.
In humans, GnRH neurons or Gonadotropin-releasing hormone expressing neurons are known to reach the brain by using this same olfactory neural pathway during development.  In addition, pathologic cells, such as the amoeba Naegleria fowleri, are known to enter the brains of humans by this same pathway and cause amoebic infection of the brain.  We have discovered how to use this pathway to delivery therapeutic cells, including stem cells, to the brain to treat disorders of the central nervous system.  This intranasal therapeutic cell delivery, targeting and treatment technology is available for licensing.

No comments:

Post a Comment