Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:

Friday, September 30, 2016

Researchers propose new way for early diagnosis of neurodegenerative diseases

Your doctor should be following this carefully so you can get assigned protocols to prevent dementia considering your likely chance of getting it post-stroke.
1. A documented 33% dementia chance post-stroke from an Australian study?   May 2012.
2. Then this study came out and seems to have a
range from 17-66%. December 2013.
3. A
20% chance in this research.   July 2013.

But I bet your doctor and stroke hospital are doing absolutely nothing on this and just sitting on their fucking asses. Some day a doctor is going to take offense at my broad brush strokes, I look forward to that day so I can specifically ream that person out.

Researchers propose new way for early diagnosis of neurodegenerative diseases

A preclinical test that may open new perspectives in the diagnosis of neurological disorders. This is the result accomplished by a group of researchers from the Center of Complexity and Biosystems of the University of Milan, who just published their work on 'Physical Review Applied'.
A vast class of incurable neurodegenerative disorders are characterized by the aggregation and deposition of aberrant proteins like the amyloid bpeptide or the a-synuclein, considered to be a factor behind the development of Alzheimer's and Parkinson's diseases, respectively. Detecting the onset of such aggregations before the appearance of the symptoms of the disease is almost impossible nowadays, but some possible solutions have been proposed. One of the most promising ones is to take advantage of the same process that determines the spread of the diseases to amplify minute quantities of protein aggregates. By doing this, it would be possible to screen small biological samples for the presence of very low concentrations of aberrant aggregates, thus allowing preclinical diagnosis of neurodegenerative diseases.
Recent advances in microfluidic technology allow analysis of protein aggregation in very small samples but, in order to enable such diagnostic approach, it is necessary to find a way to minimize the risk of false positive or negative detections, which may easily occur when analysing small quantities of biological material.
And here is where the group of researchers from the Center of Complexity and Biosystems comes into play.
The authors of the study addressed the problem with a computational approach. Basically, they simulated the onset of protein aggregations in small samples, in order to study how this process fluctuates depending on the volume of the samples. By doing that, they managed to design and validate a preclinical screening test that will ultimately allow the determination of the exact number of aggregates within the analysed sample. Such a result will improve the precision and quality of protein aggregations detection, thus representing a first step towards the realization of 'in vitro' tests for early diagnosis of neurodegenerative diseases.
"This is the first proof of concept 'in silico' that could guide the development of a test 'in vitro' to identify neurodegenerative disease before symptoms appear", said Caterina la Porta, biologist and leader of the research group.
University of Milan

No comments:

Post a Comment