Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, January 20, 2017

Endogenous peptide inhibits atherosclerosis by reducing cholesterol levels

Can no one get out of this fixation on cholesterol?  You fucking idiots, cholesterol is not the problem, inflammation is, which grabs the cholesterol out of the bloodstream packing it into plaque.  Learn about cause and effect and stop trying to force statins to be the only solution. I actually want cholesterol since  approximately 25% of the total amount of the cholesterol present in humans is localized to the brain, most of it present in myelin.
How plaque forms: Bet your doctor doesn't explain this.
Inflammation In Atherosclerotic Plaque Formation  

http://www.news-medical.net/news/20170119/Endogenous-peptide-inhibits-atherosclerosis-by-reducing-cholesterol-levels.aspx 


Cells of the innate immune system that play an important role in development of atherosclerosis contain a protein that reduces levels of cholesterol in mice - and thus helps to inhibit or mitigate the disease.
Atherosclerosis remains one of the primary causes of premature death in modern Western societies. The term itself refers to insoluble, fat-rich deposits that form on the inner wall of major blood vessels resulting in a chronic, localized inflammation. These so-called plaques obstruct blood flow and can ultimately lead to heart attacks and strokes. The unresolved inflammatory reactions that lead to atherosclerosis are initiated by immune cells in response to perturbations in lipidmetabolism owing to the presence of excess cholesterol (hypercholesterolemia) in the circulation. Researchers led by LMU's Oliver Söhnlein have now shown in mice that one of the cell types involved produces a protein that inhibits atherosclerosis by intervening in cholesterol metabolism. The new finding, reported in the journal EBioMedicine, could open up new options for the treatment of atherosclerosis.
Initiation and progression of atherosclerosis are closely linked to the activation of specific classes of cells that are part of the immune system. In earlier experiments, Söhnlein and his colleagues had shown that white blood cells called neutrophils play an important role in the process. The most abundant protein found in human neutrophils is human neutrophil peptide 1 (HNP1), which is known to have anti-microbial and pro-inflammatory functions. In contrast, mouse neutrophils normally do not express this protein at all. "This observation provided us with a unique opportunity to study the function of this protein. To do so, we genetically constructed a mouse strain that is not only prone to atherosclerosis, but also produces high levels of HNP1," Söhnlein explains. Much to their surprise, the LMU team found that the atherosclerotic lesions that formed in these mice were much smaller than those seen in the mice that lacked HNP1. "We expected to see exactly the opposite effect - in particular because we had previously discovered that HNP1 stimulates the recruitment of atherosclerosis-promoting monocytes to sites of inflammation," Söhnlein adds.
When they examined the HNP1-expressing mice more closely, the researchers discovered that the animals had lower levels of circulating cholesterol than control mice. Because cholesterol is not soluble in water, it is transported in the bloodstream in association with so-called lipoproteins. Lipoproteins are often divided into good guys and bad guys. The good guys, including HDL, transport cholesterol from the tissues to the liver and thus reduce the risk of atherosclerosis. The bad guys, like LDL, convey cholesterol in the opposite direction - from the liver to the tissues. High levels of circulating LDL thus enable more cholesterol to be delivered to endothelial cells that are especially prone to damage or are already damaged, and therefore tend to promote atherosclerosis. "Indeed, we were able to show that HNP1 binds to LDL in the bloodstream and induces rapid uptake of circulating LDL by the liver, thus reducing hypercholesterolemia," says Söhnlein. This can account for the reduction atherosclerotic lesions in HNP1-expressing mice.
The researchers believe that their findings may lead to new approaches to the treatment of hyperlipidemia. "Since HNP1 is a natural constituent of the human body, therapeutic use of the protein would be expected to be relatively free of side-effects and should not compromise immune defenses," Söhnlein points out.

No comments:

Post a Comment