Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Tuesday, January 17, 2017

Sonothrombolysis in the management of acute ischemic stroke

Only 6 years old, was this enough to add this procedure to tPA administration in your stroke hospital? Or does no one in your hospital read research at all?
https://www.ncbi.nlm.nih.gov/pubmed/20104930

Author information

  • 1Comprehensive Stroke Center, University of Alabama Hospital, Birmingham, Alabama, USA. mrubifu@hotmail.com

Abstract

Multiple in vitro and animal models have demonstrated the efficacy of ultrasound to enhance fibrinolysis. Mechanical pressure waves produced by ultrasound energy improve the delivery and penetration of alteplase (recombinant tissue plasminogen activator [tPA]) inside the clot. In human stroke, the CLOTBUST phase II trial showed that the combination of alteplase plus 2 hours of continuous transcranial Doppler (TCD) increased recanalization rates, producing a trend toward better functional outcomes compared with alteplase alone. Other small clinical trials also showed an improvement in clot lysis when transcranial color-coded sonography was combined with alteplase. In contrast, low-frequency ultrasound increased the symptomatic intracranial hemorrhage rate in a clinical trial. Administration of microbubbles (MBs) may further enhance the effect of ultrasound on thrombolysis by lowering the ultrasound-energy threshold needed to induce acoustic cavitation. Initial clinical trials have been encouraging, and a multicenter international study, TUCSON, determined a dose of newly developed MBs that can be safely administered with alteplase and TCD. Even in the absence of alteplase, the ultrasound energy, with or without MBs, could increase intrinsic fibrinolysis. The intra-arterial administration of ultrasound with the EKOS NeuroWave catheter is another ultrasound application for acute stroke that is currently being studied in the IMS III trial. Operator-independent devices, different MB-related techniques, and other ultrasound parameters for improving and spreading sonothrombolysis are being tested.
PMID:
20104930
DOI:
10.2165/11316850-000000000-00000

No comments:

Post a Comment