Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, January 8, 2020

Human Milk Oligosaccharide 2′-Fucosyllactose Reduces Neurodegeneration in Stroke Brain

 Good luck trying to find a source for human milk. Or maybe you want your doctor to increase bromodeoxyuridine (BrdU) another way.  Your doctor should be fluent in everything in this research.

  • BrdU (26 posts to May 2011)

 Human Milk Oligosaccharide 2′-Fucosyllactose Reduces Neurodegeneration in Stroke Brain



Abstract

2′-Fucosyllactose (2’-FL) is a major oligosaccharide in human milk and is present at trace levels in cow milk. 2’-FL reduces inflammation in the gastrointestinal tract. Its action in the central nervous system has not been well characterized. The purpose of this study is to determine 2’-FL-mediated neural protection and repair in culture and stroke brain. In rat primary cortical neuronal cultures, 2’-FL significantly antagonized N-methyl-D-aspartate (NMDA) or glutamate-mediated changes in ATP production, MAP2 immunoreactivity, and TUNEL. The influx of Ca++ (Ca++i) was examined in primary cortical neurons expressing GCaMP5, an endogenous calcium probe. NMDA increased Ca++i; 2’-FL significantly attenuated this reaction. In a rat middle cerebral artery occlusion model of stroke, we found that intracerebroventricular pretreatment or oral posttreatment with 2’-FL significantly reduced brain infarction, mitigated microglial activation, improved locomotor activity, and upregulated brain-derived neurotrophic factor (BDNF) expression. Post-stroke delivery of 2’-FL increased bromodeoxyuridine (BrdU) labeling in the perilesioned area. These BrdU cells co-expressed NeuN, or nestin, or GFAP. Using subventricular Matrigel cultures, we demonstrated that 2’-FL increased cell migration from subventricular zone explant. This response was reduced by anti-BDNF blocking antibody. In conclusion, our data suggest that 2’-FL has neuroprotective action through inhibition of Ca++i, inflammation, and apoptosis. Posttreatment with 2’-FL facilitates neural repair in stroke brain.

This is a preview of subscription content, log in to check access.

No comments:

Post a Comment