Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, April 29, 2020

Parkinson disease may start in the gut

You better hope your doctor has Parkinson's prevention protocols, you may need it. 

Parkinson’s Disease May Have Link to Stroke March 2017

S/he has had three years to come up with prevention protocols. Why the hell aren't there any? 

 

Laziness? Incompetence? Or just don't care? No leadership? No strategy? Not my job?  The board of directors didn't tell them that totally solving stroke was their job, not just lazily relying on the status quo?

Parkinson disease may start in the gut

Karolinska Institutet | April 27, 2020
Researchers at Karolinska Institutet and the University of North Carolina have mapped out the cell types behind various brain disorders. The findings are published in Nature Genetics and offer a roadmap for the development of new therapies to target neurological and psychiatric disorders. One interesting finding was that cells from the gut's nervous system are involved in Parkinson disease, indicating that the disease may start there.
The nervous system is composed of hundreds of different cell types with very different functions. It is vital to understand which cell types are affected in each disorder so as to understand the causes of the disorders and, ultimately, develop new treatments.
Researchers have now combined mice gene expression studies with human genetics to systematically map cell types underlying various brain disorders, including Parkinson disease, a neurodegenerative disorder with cognitive and motor symptoms resulting from the loss of dopamine-producing cells in a specific region of the brain.
Several unexpected findings
“As expected, we found that dopaminergic neurons were associated with Parkinson disease. More surprisingly, we found that enteric neurons also seem to play an important role in the disorder, supporting the hypothesis that Parkinson disease starts in the gut,” says one of the study’s main authors Patrick Sullivan, Professor at the Department of Medical Epidemiology and Biostatistics at Karolinska Institutet and Yeargan Distinguished Professor at the University of North Carolina.
When the researchers analysed differences in brain tissue from healthy individuals and people with Parkinson disease at different stages of the disease, they made another unexpected discovery. A type of support cell in the brain called oligodendrocytes were found to be affected early on, suggesting that they play a key role in the early stages of the disease.
Attractive target for new therapies
“The fact that the animal studies pointed us to oligodendrocytes and that we were then able to show that these cells were also affected in patients suggests that the results may have clinical implications,” says Jens Hjerling-Leffler, research group leader at the Department of Medical Biochemistry and Biophysics at Karolinska Institutet and the other main author of the study.
The oligodendrocytes appear to be affected even before the loss of dopaminergic neurons.
Advertisement
“This makes them an attractive target for therapeutic interventions in Parkinson disease,” says Julien Bryois, researcher at the Department of Medical Epidemiology and Biostatistics at Karolinska Institutet and one of the first authors of the study.
The study was financed by the Swedish Research Council, StratNeuro, the Wellcome Trust, the Swedish Brain Foundation, the Swiss National Science Foundation, the US National Institute of Mental Health, and the Psychiatric Genomics Consortium.
Patrick Sullivan reports that he is currently a member of the pharmaceutical company Lundbeck’s advisory committee and that he has received grants from them. For the past three years he has been a member of Pfizer’s scientific advisory board and received fees from Element Genomics and Roche. Co-author Cynthia Bulik has received grants from Shire and is a member of their scientific advisory board. She is also an author and recipient of royalties from both Pearson and Walker.

To read more, click here.


No comments:

Post a Comment