Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, November 7, 2011

Despite brain damage, working memory functions -- within limits

http://www.physorg.com/news/2010-10-brain-memory-functions-limits.html
Researchers at the University of California, San Diego School of Medicine, led by Larry R. Squire, PhD, professor of psychiatry, psychology and neurosciences at UC San Diego and a scientist at the VA San Diego Healthcare System, report that working memory of relational information – where an object is located, for example – remains intact even if key brain structures like the hippocampus are damaged.

The findings, published in the October 13, 2010 issue of The Journal of , run contrary to previous research that suggested spatial information, especially if it's linked to other kinds of information, necessarily involves the hippocampus and other regions associated with .

is the mental ability to hold small amounts of information in an active, readily available state for a short period of time, typically a few seconds. Conversely, long-term memory involves storing a potentially unlimited amount of information for an indefinite period of time.

Squire and colleagues examined four memory-impaired patients with damage to their medial temporal lobes (MTL), a region of the cerebral cortex containing the hippocampus and linked to long-term memory formation.

The four patients were asked to briefly study an arrangement of objects on a table, then reproduce the objects' relative positions on another table. When the number of objects was three or less, the patients' ability to recall was similar to that of control subjects without damage. The impaired patients easily remembered where the objects had been placed in relation to each other.

But "their performance abruptly collapsed when the limit of working memory was reached," said Squire. The patients could not remember the locations of four or more objects because doing so involved tapping into long-term memory functions in the medial temporal lobe.

"The findings provide strong evidence for a fundamental distinction in the brain between working memory and long-term memory, even in the realm of spatial information and spatial-object associations," Squire said.

The work has practical and clinical significance as well, according to Squire.

"It indicates that patients with memory impairment due to MTL damage, including early stage Alzheimer's disease, have a narrower difficulty than what one might have thought. They have an intact ability to hold information in mind, and an ability to work with it on a temporary basis."

No comments:

Post a Comment