Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, November 7, 2011

New findings contradict dominant theory in Alzheimer's disease

Nor directly related but if we have a stroke we have a much higherLink chance of getting Alzheimers, so I post on this also.
http://medicalxpress.com/news/2011-10-contradict-dominant-theory-alzheimer-disease.html

LinkFor decades the amyloid hypothesis has dominated the research field in Alzheimer's disease. The theory describes how an increase in secreted beta-amyloid peptides leads to the formation of plaques, toxic clusters of damaged proteins between cells, which eventually result in neurodegeneration. Scientists at Lund University, Sweden, have now presented a study that turns this premise on its head.

The research group's data offers an opposite hypothesis, suggesting that it is in fact the neurons' inability to secrete beta-amyloid that is at the heart of in Alzheimer's disease.

The study, published in the October issue of the , shows an increase in unwanted intracellular beta-amyloid occurring early on in Alzheimer's disease. The accumulation of beta-amyloid inside the neuron is here shown to be caused by the loss of normal function to secrete beta-amyloid.

Contrary to the dominant theory, where aggregated extracellular beta-amyloid is considered the main culprit, the study instead demonstrates that reduced secretion of beta-amyloid signals the beginning of the disease.

The damage to the neuron, created by the aggregated toxic beta-amyloid inside the cell, is believed to be a prior step to the formation of plaques, the long-time hallmark of the disease.

Professor Gunnar Gouras, the senior researcher of the study, hopes that the surprising new findings can help push the research field in a new direction.

"The many investigators and screening for compounds that reduce secreted beta-amyloid have it the wrong way around. The problem is rather the opposite, that it is not getting secreted. To find the root of the disease, we now need to focus on this critical intracellular pool of beta-amyloid.

"We are showing here that the increase of intracellular beta-amyloid is one of the earliest events occurring in Alzheimer's disease, before the formation of plaques. Our experiments clearly show a decreased secretion of beta-amyloid in our primary neuron disease model. This is probably because the cell's metabolism and secretion pathways are disrupted in some way, leading beta-amyloid to be accumulated inside the cell instead of being secreted naturally", says Davide Tampellini, first author of the study.

The theory of early accumulation of beta-amyloid inside the cell offers an alternate explanation for the formation of plaques. When excess amounts of beta-amyloid start to build up inside the cell, it is also stored in synapses.

When the synapses can no longer hold the increasing amounts of the toxic peptide the membrane breaks, releasing the waste into the extracellular space. The toxins released now create the seed for other amyloids to gather and start forming the plaques.

No comments:

Post a Comment