Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, January 5, 2017

Innovative technique to examine blood vessels in 3D help unlock secrets of the brain

With this we should be able to watch and see if interventions to stop pericytes from strangling capillaries post-stroke actually work. Or even just to see how long the strangling occurs.  But with NO strategy and NO leadership, solving this part of the neuronal cascade of death will never occur.
http://www.alphagalileo.org/ViewItem.aspx?ItemId=171345&CultureCode=en

  • Blood vessels examined in 3D allow scientists to examine circulation in the brain giving greater understanding of how dementia, brain cancer and stroke may affect veins and capillaries in this important organ.
  • Technique could identify early warning signs of diseases helping to save lives.
  • Scientists previously unable to study minute blood vessels which could unlock secrets of circulation and how diseases form in brain.
A study published today in the Journal of Anatomy has made an important breakthrough in the examination of blood vessels in the brain giving scientists a clearer understanding of how dementia, brain cancer and stroke can affect veins and capillaries in this organ.
Working collaboratively researchers from the University of Surrey and the Federal University of Sao Paulo developed an innovative technique to examine and quantify blood vessels in the brain using 3D Image Analysis (Stereology) procedures.
Using experimental animal models, this technique will allow scientists to study how such diseases develop in the brain and help them identify, through examination of blood vessels, potential warning signs of illnesses before symptoms appear. These learnings can potentially be translated into humans and help reduce the number of deaths from these illnesses.
The procedure can also be used in post mortems and biopsies examinations of animal and human tissue making it easier for pathologists to determine causes of death and quickly identify alterations in the brain circulation (such as clots) or tumors.
The inexpensive technique of dissolving China Ink with gelatin creates a solution making blood vessels more visible with the use of a confocal microscope. This enables scientists and pathologists to make an accurate reading of their number, length, surface area and create 3D images which can help identify changes in their shape and size, key indicators of a number of circulation-related diseases of the brain.
This innovative method will also facilitate a greater understanding of how exercise affects the brain. Scientists will now be able to examine circulatory effects of increased or decreased heart rate, arterial pressure on the brain and the creation of new vessels (angiogenesis).
Co-author of the study Dr Augusto Coppi from the University of Surrey said: “The brain is a fascinating organ but our full understanding of its circulation is lacking. Previously we have been unable to fully sample and perform a quantification of the circulation of the brain in 3D as we simply could not see all vessels due to their minute size and sometimes due to their irregular spatial distribution.
“This new technique will allow us to sample, image and count blood vessels in 3D giving us a greater mechanistic comprehension of how the circulation of the brain works and how brain diseases such as dementia and stroke affect this organ. With an estimated 850,000 people diagnosed with dementia in England, this technique marks a significant breakthrough in the fight against this disease.”

No comments:

Post a Comment