Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, February 8, 2017

Cumulative Use of Strong Anticholinergics and Incident Dementia

Where Can I Find A List of Anticholinergic Drugs?

But you need to know none of this since your doctor will know about this study from March 2015 and have already updated your drug taking protocols.

Notice that baclofen, Tizanidine (Zanaflex) and Zantac may have some anticholinergic activity.

The latest here:

Cumulative Use of Strong Anticholinergics and Incident Dementia

JAMA Intern Med. 2015;175(3):401-407. doi:10.1001/jamainternmed.2014.7663
Abstract
Importance  Many medications have anticholinergic effects. In general, anticholinergic-induced cognitive impairment is considered reversible on discontinuation of anticholinergic therapy. However, a few studies suggest that anticholinergics may be associated with an increased risk for dementia.
Objective  To examine whether cumulative anticholinergic use is associated with a higher risk for incident dementia.
Design, Setting, and Participants  Prospective population-based cohort study using data from the Adult Changes in Thought study in Group Health, an integrated health care delivery system in Seattle, Washington. We included 3434 participants 65 years or older with no dementia at study entry. Initial recruitment occurred from 1994 through 1996 and from 2000 through 2003. Beginning in 2004, continuous replacement for deaths occurred. All participants were followed up every 2 years. Data through September 30, 2012, were included in these analyses.
Exposures  Computerized pharmacy dispensing data were used to ascertain cumulative anticholinergic exposure, which was defined as the total standardized daily doses (TSDDs) dispensed in the past 10 years. The most recent 12 months of use was excluded to avoid use related to prodromal symptoms. Cumulative exposure was updated as participants were followed up over time.
Main Outcomes and Measures  Incident dementia and Alzheimer disease using standard diagnostic criteria. Statistical analysis used Cox proportional hazards regression models adjusted for demographic characteristics, health behaviors, and health status, including comorbidities.
Results  The most common anticholinergic classes used were tricyclic antidepressants, first-generation antihistamines, and bladder antimuscarinics. During a mean follow-up of 7.3 years, 797 participants (23.2%) developed dementia (637 of these [79.9%] developed Alzheimer disease). A 10-year cumulative dose-response relationship was observed for dementia and Alzheimer disease (test for trend, P < .001). For dementia, adjusted hazard ratios for cumulative anticholinergic use compared with nonuse were 0.92 (95% CI, 0.74-1.16) for TSDDs of 1 to 90; 1.19 (95% CI, 0.94-1.51) for TSDDs of 91 to 365; 1.23 (95% CI, 0.94-1.62) for TSDDs of 366 to 1095; and 1.54 (95% CI, 1.21-1.96) for TSDDs greater than 1095. A similar pattern of results was noted for Alzheimer disease. Results were robust in secondary, sensitivity, and post hoc analyses.
Conclusions and Relevance  Higher cumulative anticholinergic use is associated with an increased risk for dementia. Efforts to increase awareness among health care professionals and older adults about this potential medication-related risk are important to minimize anticholinergic use over time.

No comments:

Post a Comment