Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Tuesday, February 21, 2017

Efficacy of Short-Term Robot-Assisted Rehabilitation in Patients With Hand Paralysis After Stroke

This is actually pretty useless since there seems to be no objective diagnosis as to why there is hand paralysis.
Which of these 9 causes did this intervention work on?
1. Penumbra damage to the motor cortex.
2. Dead brain in the motor cortex.
3. Penumbra damage in the pre-motor cortex.
4. Dead brain in the pre-motor cortex.
5. Penumbra damage in the executive control area.
6. Dead brain in the executive control area.
7. Penumbra damage in the white matter underlying any of these three.
8. Dead brain in the white matter underlying any of these three.
9. Spasticity preventing movement from occurring.
http://journals.sagepub.com/doi/full/10.1177/1558944717692096
First Published February 16, 2017 research-article




Background: We evaluated the effectiveness of robot-assisted motion and activity in additional to physiotherapy (PT) and occupational therapy (OT) on stroke patients with hand paralysis.  
Methods: A randomized controlled trial was conducted. Thirty-two patients, 34.4% female (mean ± SD age: 68.9 ± 11.6 years), with hand paralysis after stroke participated. The experimental group received 30 minutes of passive mobilization of the hand through the robotic device Gloreha (Brescia, Italy), and the control group received an additional 30 minutes of PT and OT for 3 consecutive weeks (3 d/wk) in addition to traditional rehabilitation. Outcomes included the National Institutes of Health Stroke Scale (NIHSS), Modified Ashworth Scale (MAS), Barthel Index (BI), Motricity Index (MI), short version of the Disabilities of the Arm, Shoulder and Hand (QuickDASH), and the visual analog scale (VAS) measurements. All measures were collected at baseline and end of the intervention (3 weeks).  
Results: A significant effect of time interaction existed for NIHSS, BI, MI, and QuickDASH, after stroke immediately after the interventions (all, P < .001). The experimental group had a greater reduction in pain compared with the control group at the end of the intervention, a reduction of 11.3 mm compared with 3.7 mm, using the 100-mm VAS scale.  
Conclusions: In the treatment of pain and spasticity in hand paralysis after stroke, robot-assisted mobilization performed in conjunction with traditional PT and OT is as effective as traditional rehabilitation.

No comments:

Post a Comment