Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, January 8, 2020

Gut Microbes May Improve Stroke Recovery

Will your doctor do anything with this? Or will this take 50 years to get implemented in your stroke hospital?

Gut Microbes May Improve Stroke Recovery

LEXINGTON, Ky. (Jan. 8, 2020) — New research shows that the microorganisms in our gut could help protect brain cells from damage caused by inflammation after a stroke.
The study, published in the Journal of Neuroscience by researchers from the Ludwig Maximilian University of Munich, University of Kentucky’s College of Medicine and University of Texas Southwestern Medical Center reveals that supplementing the body’s short chain fatty acids could improve stroke recovery.
Short chain fatty acids, which are produced by the community of bacteria that live in the gut – known collectively as the microbiome – are a key component of gut health. Although it is known that the microbiome can also influence brain health and the central nervous system, its role in stroke recovery has not yet been explored.
“There is a growing amount of evidence that inflammation can be influenced by the microbiome, and now we are learning how it affects neuroinflammation after brain injury,” says Ann Stowe, UK associate professor in the Department of Neurology and co-author of the study.
Researchers added short chain fatty acids to the drinking water of mice, and those that drank the fatty acid water experienced a better stroke recovery. The fatty acid-supplemented mice had reduced motor impairment as well as increased spine growth on the dendrites of nerve cells, which are crucial for memory structure. They also expressed more genes related to microglia, the brain’s immune cells. This relationship indicates short chain fatty acids may serve as messengers in the gut-brain connection by influencing how the brain responds to injury.
The results could be promising news for stroke patients. Currently, there are only two FDA-approved treatments for acute stroke and no effective therapeutics to promote long-term repair in the brain after stroke damage.
A short chain fatty acid dietary supplement may be a safe and practical additional therapy for stroke rehabilitation, Stowe says.
“If we can confirm that a dietary supplement could be beneficial to inflammation and recovery after stroke, it could positively impact so many lives. We have nearly 800,000 people a year in the U.S. who are affected by stroke,” said Stowe.
The Centers for Disease Control and Prevention reports that stroke is also the number one cause of adult disability and the fifth leading cause of death in the U.S.
Stowe says the research collaboration with Dr. Arthur Liesz’ group in Munich is ongoing and next steps are to focus on additional behavioral tests as well as examining some of the specific immune cell populations that are affected by short chain fatty acids.

No comments:

Post a Comment