Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, April 20, 2017

Could young blood revive memory in the aging brain?

Followup research needed, start saving your pennies to hire some researchers since our fucking failures of stroke associations will do nothing.
http://www.cbsnews.com/news/young-cord-blood-revive-memory-in-the-aging-brain/
A new study hints that young blood may harbor clues to a “fountain of youth” for older brains.
Researchers say blood from human umbilical cords appears to have helped reverse memory loss in aging mice.
The findings suggest that something in young blood is important in maintaining mental acuity.
No one, however, is saying that cord blood could be a magic bullet against Alzheimer’s or other forms of dementia.
For one, any effects seen in elderly rodents may fail to translate to humans.
Instead, the findings might set the stage for new drugs that target the dementia process, said study lead author Joseph Castellano. He’s an instructor in neurology at Stanford University School of Medicine.
“Part of what makes this exciting is that it suggests there’s more communication between the blood and brain than we’ve thought,” Castellano said.
The study builds on earlier work by the same Stanford team. There, the researchers found that old lab mice benefited from infusions of plasma (the liquid portion of blood) from young mice.
Specifically, the old mice showed improvements in learning and memory. This was measured by the ability to accomplish tasks like navigating a maze or building a nest.
The aim of the new study, Castellano said, was to see whether injections of human plasma given to mice could have similar effects.
It turned out that they did — at least when the plasma came from umbilical cords. Plasma from young adults had less of an impact. And plasma from older adults, ages 61 to 82, had no benefit at all.
That led to a critical question: What is it about umbilical cord blood that’s special?
The researchers found evidence that it might be a protein called TIMP2. It is present in high levels in cord plasma, they said, but declines with age.
What’s more, injections of TIMP2 benefited older rodents’ brains in the same way that cord plasma did.
Castellano said it was “surprising” that a single protein had such effects.
But, he noted, TIMP2 could be “upstream” of many biological processes. It belongs to a family of proteins that regulate other critical proteins. Those proteins, in turn, have the task of “chopping up” yet more proteins that exist in the matrix surrounding body cells.
But researchers know little about how TIMP2 acts on the brain, Castellano said.
“Now, we really need to get a better understanding of what it’s doing in the brain,” he said. “We are not saying we’ve found the protein that’s responsible for brain aging.”
Dr. Marc Gordon is a professor at the Litwin-Zucker Center for Alzheimer’s Disease and Memory Disorders at the Feinstein Institute for Medical Research in Manhasset, N.Y.
He agreed that the study identifies a protein “target” that should be studied further.
“But this is not saying that cord blood is a cure for aging,” Gordon stressed.
And it’s probably unrealistic to use cord blood as a dementia treatment, said Castellano.
Nor can anyone predict whether TIMP2 will point researchers toward new drugs for dementia. Findings in lab animals often fail to pan out in humans.
Plus, Gordon said, this study involved mice that were old, but did not have an “animal model” of Alzheimer’s. That refers to lab mice that are genetically modified to have Alzheimer’s-like brain pathology.
“What this could mean for human disease is purely speculative,” Gordon said.
Drugs for age-related brain disease have so far been “elusive,” Castellano said. The available medications for dementia symptoms have limited effects, and cannot stop the disease from progressing.
“We’re excited,” Castellano added, “about this knowledge that there are proteins present in the blood that evolve over the life span, and may affect brain function.”
The findings were published April 19 in Nature.

No comments:

Post a Comment