Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Sunday, April 23, 2017

Research shows fish oil component helps damaged brain and retina cells survive

Doesn't anyone read the literature? Hints were written this about years ago. Where the fuck is the publicly written protocol? Was your doctor and stroke hospital waiting for SOMEONE ELSE TO SOLVE THE PROBLEM?  Thus letting trillions of neurons to die?

Fish Oil Injection to Stroke Victims: Remedy for Brain Damage  Feb. 2013

Aspirin plus fish oil for a hyperacute treatment.  Feb. 2012

The latest here:

Research shows fish oil component helps damaged brain and retina cells survive

April 21, 2017
Credit: Louisiana State University
A team of researchers led by Nicolas Bazan, MD, PhD, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health New Orleans School of Medicine, has shown for the first time that NDP1, a signaling molecule made from DHA, can trigger the production of a protective protein against toxic free radicals and injury in the brain and retina. The research, conducted in an experimental model of ischemic stroke and human retinal pigment epithelial (RPE) cells, is available in Advance Publication Online in Nature's Cell Death and Differentiation.
Neuroprotectin D1 (NPD1) is a lipid messenger made from the docosahexaenoic acid (DHA) made on demand when cell survival is compromised. NPD1 was discovered and named in 2004 by Dr. Bazan and colleagues. Oxidative stress, resulting from the constant production of damaging , lays the groundwork for . Cell death is accelerated by catastrophic events, like , as well as neurodegenerative and blinding-eye diseases. The research team found that when systematically administered one hour after two hours of experimental stroke, NPD1 increased the production and availability of ring finger protein 146, which has been named Iduna.
Iduna facilitates DNA repair and protects against a form of programmed cell death in stroke known as parthanatos by suppressing the production of a destructive protein called PARP. Their findings also include that NDP1 enhanced the production of Iduna and protection in two types of human RPE (ARPE-19 and primary RPE) undergoing uncompensated . The researchers found that the effect of NDP1 on Iduna activity peaked at six hours after the onset of the oxidative stress, A dose-dependent curve showed an increase of Iduna activity starting as 25 nM NPD1 in both types of human RPE cells. These results suggest that NDP1 selectively induces Iduna activity when uncompensated oxidative stress triggers the formation of NPD1 that in turn activates Iduna.
"These findings are significant because they show how NPD1, a lipid mediator made 'on demand,' modulates the abundance of a critically important protein (Iduna) toward cell survival," notes Nicolas Bazan, MD, PhD, Boyd Professor and Director of the Neuroscience Center of Excellence at LSU Health New Orleans School of Medicine. "This protein, relatively little studied, turns out to be key for cell functional re-programing and subsistence." DHA, found in fish oil, is an essential omega-3 fatty acid and is vital for proper brain function. It is also necessary for the development of the nervous system, including vision. A study from the Bazan laboratory published in 2011 found that DHA triggered the production of Neuroprotectin D1, a naturally occurring neuroprotective molecule in the brain derived from DHA. NDP1 bioactivity governs key gene interactions decisive in when threatened by disease or injury.
"The further unraveling of the molecular details of DHA-NPD1-Iduna expression signaling may contribute to possible therapeutic interventions for retinal degenerations and ischemic stroke." says Bazan.

No comments:

Post a Comment