Our stroke teams should be looking at this for air transport to stroke centers. It would be good to know at what altitude they were traveling at. Plane vs. helicopter?
http://www.alphagalileo.org/ViewItem.aspx?ItemId=159035&CultureCode=en
A study that simulated the effects of reduced barometic pressure
(hypobaria) experienced by patients with traumatic brain injury (TBI)
evacuated by air showed that prolonged hypobaria significantly worsened
long-term cognitive and neurological outcomes. Maintaining normal oxygen
levels did not affect the poorer outcomes after hypobaric exposure, and
multiple exposures or use of 100% oxygen further worsened the effects
in the rats studied, as described in an article published in Journal of
Neurotrauma, a peer-reviewed journal from Mary Ann Liebert, Inc.,
publishers (http://www.liebertpub.com/). The article is available free
to download on the Journal of Neurotrauma
(http://online.liebertpub..com/doi/full/10.1089/neu.2015.4189) website
until January 2, 2016.
In "Simulated Aeromedical Evacuation Exacerbates Experimental Brain
Injury (http://online.liebertpub.com/doi/full/10.1089/neu.2015.4189),"
Alan Faden, MD led a team of researchers from the Center for Shock,
Trauma and Anesthesiology Research (STAR), University of Maryland School
of Medicine, Baltimore, in designing a study that simulated the
prolonged hypobaria that a soldier with TBI would experience if
evacuated by air from the battlefield. The researchers examined the
effects on learning, memory, movement, and depressive-like behaviors in
rats with induced TBI exposed to 6 hours of hypobaria 24 hours after
injury. Some rats were exposed to a second 10-hour hypobaric period 72
hours after injury.
Based on the results of this study, the
authors suggest several approaches to limit the negative effects of
hypobaric exposure following TBI, including delaying air transport,
increasing cabin pressurization to reduce barometric effects, having
specialized enclosures to individualize pressurization, or changing
supplemental oxygenation protocols.
In the Editorial "Hidden
Perils of the 'Wild Blue Yonder' after Traumatic Brain Injury
(http://online.liebertpub.com/doi/full/10.1089/neu.2015.4329)," Patrick
M. Kochanek, MD, MCCM and Hülya Bayir, MD, University of Pittsburgh, PA,
describe the study as "a valuable and timely exploratory report that
takes an early step in addressing a largely unrecognized gap in the
pre-clinical and clinical literatures-a gap that is highly relevant to
combat casualty care, but also to some cases of civilian trauma." The
study authors "appear to have identified a new secondary injury pathway
after TBI to add to the list of hypoxemia, hypotension, hyponatremia,
hyperthermia, hypertension, hypervolemia, namely, hypobaria that needs
to be characterized and prevented to maximize outcomes after TBI-even if
patients need to travel into the wild blue yonder."
John T.
Povlishock, PhD, Editor-in-Chief of Journal of Neurotrauma and
Professor, Medical College of Virginia Campus of Virginia Commonwealth
University, Richmond, notes that, "the Journal is exceptionally pleased
to report this well done and provocative study that probes important
questions relevant to the current standard of combat casualty care
during aeromedical evacuation. The reported studies conducted in
traumatically brain injured rodents illustrate the damaging consequences
of sustained hypobaric exposure, while demonstrating the concomitant
adverse consequences associated with the use of 100% oxygen. While
additional studies are needed to further refine the overall
interpretation of this study, the published work raises the important
implication that hypobaria should be considered a potential secondary
insult in traumatically brain injured patients."
http://online.liebertpub.com/doi/abs/10.1089/neu.2015.4189
Use the labels in the right column to find what you want. Or you can go thru them one by one, there are only 29,384 posts. Searching is done in the search box in upper left corner. I blog on anything to do with stroke. DO NOT DO ANYTHING SUGGESTED HERE AS I AM NOT MEDICALLY TRAINED, YOUR DOCTOR IS, LISTEN TO THEM. BUT I BET THEY DON'T KNOW HOW TO GET YOU 100% RECOVERED. I DON'T EITHER BUT HAVE PLENTY OF QUESTIONS FOR YOUR DOCTOR TO ANSWER.
Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.
What this blog is for:
My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.
Thursday, December 3, 2015
Air Evacuation Following Traumatic Brain Injury Worsens Effects on Learning, Memory and Brain Cell Loss
Labels:
air transport,
hypobaria,
rats,
TBI
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment