Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, October 23, 2012

Draper Laboratory developing “Brain-on-a-Chip”

written up in a Virtual-Strategy magazine here:
http://www.virtual-strategy.com/2012/10/23/draper-laboratory-developing-%E2%80%9Cbrain-chip%E2%80%9D

The actual research abstract here:
http://pubs.rsc.org/en/content/articlelanding/2012/lc/c2lc41033h
In this work, we describe the fabrication and working of a modular microsystem that recapitulates the functions of the “Neurovascular Unit”. The microdevice comprised of a vertical stack of poly (dimethylsiloxane) (PDMS) neural parenchymal chamber separated by a vascular channel via a microporous polycarbonate (PC) membrane. The neural chamber housed a mixture of neurons (~4%), astrocytes (~95%), and microglia (~1%). The vascular channel was lined with a layer of rat brain microvascular endothelial cell line (RBE4). Cellular components in neural chamber and vascular channel showed viability (>90%). The neural cells fired inhibitory as well as excitatory potentials following 10 days of culture. The endothelial cells showed diluted-acetylated low density lipoprotein (dil-a-LDL) uptake, expressed von Willebrand factor (vWF) and zonula occludens (ZO-1) tight junctions, and showed decreased Alexafluor™-conjugated dextran leakage across their barrier significantly compared with controls (p < 0.05). When the vascular layer was stimulated with TNF-α for 6h, about 75% of resident microglia and astrocytes on the neural side were activated significantly (p < 0.05 compared to controls) recapitulating tissue-mimetic responses resembling neuroinflammation. The impact of this microsystem lies in the fact that this biomimetic neurovascular platform might not only be harnessed for obtaining mechanistic insights for neurodegenerative disorders, but could also serve as a potential screening tool for central nervous system (CNS) therapeutics in toxicology and neuroinfectious diseases.

I wonder how much different it is than the
Lab on a Chip?

No comments:

Post a Comment