Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, April 4, 2016

New insights in blood vessel formation

We need this to support any neurogenesis or stem cell treatment. But will not occur because we have NO stroke leadership or strategy. 
http://www.alphagalileo.org/ViewItem.aspx?ItemId=162678&CultureCode=en
How vascular tubes build, maintain and adapt continuously perfused lumens to meet local metabolic needs remains poorly understood. Recent studies showed that blood flow itself plays a critical role in the remodelling of vascular networks and suggested it is also required for the lumenization of new vascular connections. However, it is still unknown how haemodynamic forces contribute to the formation of new vascular lumens during blood vessel morphogenesis. An international team of researchers under the direction of Holger Gerhardt (VIB/KU Leuven/Cancer Research UK/MDC/BIH Berlin) found that blood flow drives lumen expansion during sprouting angiogenesis in vivo by inducing spherical deformations of the apical membrane of endothelial cells, in a process that they have termed inverse blebbing.
Holger Gerhardt (VIB/KU Leuven/Cancer Research UK/ MDC/BIH Berlin): “This work combined with previous studies highlights the importance of balanced endothelial cell contractility in allowing the expansion and maintenance of endothelial lumens during blood vessel development.”
These results challenge the previous idea that sprouting cells expand lumens independently of blood flow during angiogenesis in vivo through the generation and fusion of intracellular vacuoles. The researchers showed that haemodynamic forces dynamically shape the apical membrane of single or groups of endothelial cells during angiogenesis in vivo to form and expand new lumenized vascular tubes.  “We find that this process relies on a tight balance between the forces applied on the membrane and the local contractile responses from the endothelial cells, as impairing this balance either way leads to lumen defects”, Holger Gerhardt says.
This finding of inverse blebbing suggests that the process of blebbing, best studied in cell migration and cytokinesis, does not require a specific polarity, but is likely to be generally applicable to situations in which external versus internal pressure differences challenge the stability and elasticity of the actin cortex. It more generally raises the question of the role of apical membrane contractility in the adaptation to varying haemodynamic environments, both during blood vessel morphogenesis, as connections form or remodel, and in pathological settings.
Holger Gerhardt: “Understanding whether and how this plasticity of the apical membrane and its underlying cortex is challenged in pathological conditions, where vessels exhibit altered perfusion and lack organized structure, has the potential to provide deeper insight into mechanisms of vascular adaptation and maladaptation. We will definitely further investigate this.”

Alongside the publication of the Holger Gerhardt lab a highlight article from Erez Raz (University of Münster, Institute of Cell Biology) was published. In this article he concludes: ‘Overall, this work underscores the significance of dynamic in vivo analysis for the understanding of fundamental processes in cell and developmental biology. Employing improved imaging techniques and the newly-developed powerful genetic tools in the zebrafish model are likely to provide an even deeper understanding of the mechanisms controlling vascular system development, as well as those important for the formation and shaping of other organs, tissues and structures.’

No comments:

Post a Comment