Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, January 4, 2019

Impact of 12/15-Lipoxygenase on Brain Injury After Subarachnoid Hemorrhage

Followup needed so contact stroke leadership to get this tested in humans. Another piece of the puzzle for the hemorrhage cascade of death. 

Impact of 12/15-Lipoxygenase on Brain Injury After Subarachnoid Hemorrhage


Originally publishedhttps://doi.org/10.1161/STROKEAHA.118.022325Stroke. 2019;0:STROKEAHA.118.022325

Background and Purpose—

Subarachnoid hemorrhage (SAH) is a devastating form of stroke. Oxidative stress contributes to brain injury, but the mechanisms have been poorly studied. Here, we evaluated the role of 12/15-lipoxygenase (12/15-LOX), an enzyme known to cause cell death in ischemic stroke, on brain injury in a mouse model of SAH.

Methods—

C57Bl6 wild-type mice and Alox15 knockout mice were subjected to SAH using a direct blood injection technique. In SAH wild-type mice, half received the 12/15-LOX inhibitor ML351 and half received vehicle. Immunohistochemistry, brain edema, blood-brain barrier leakage and functional outcomes were assessed 1 and 3 days after SAH induction.

Results—

SAH led to increased 12/15-LOX in macrophages of the brain parenchyma, adjacent to the subarachnoid blood. Neuronal cell death after SAH was reduced by ML351 and in Alox15 knockout mice. Similarly, SAH induced brain edema, which was 12/15-LOX dependent. Finally, Alox15 gene knockout and inhibitor treatment in wild-type mice with SAH led to an improved behavioral outcome.

Conclusions—

12/15-LOX is overexpressed in macrophages after SAH in mice, and inhibition of the 12/15-LOX pathway decreases brain injury and improves neurological outcome. This study suggests 12/15-LOX as a novel therapeutic target to limit brain injury after SAH.

Visual Overview

No comments:

Post a Comment