Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, November 10, 2019

AI Used To Recreate Human Brain Waves In Real Time

I have no clue, so ask your doctor for clarification on how this is going to work AND what researcher they are working with to get this accomplished. No researcher contacted, call the stroke hospital president and politely ask when competent doctors will be hired.  OR not so politely.  Somehow WE have to remove a massive quantity of dead wood in stroke, start with your doctor and work your way up to the board of directors for not setting correct goals for the hospital staff.  100% recovery is the only goal in stroke. DO NOT ACCEPT THE TYRANNY OF LOW EXPECTATIONS THEY WILL TRY TO PASS OFF AS THE ONLY POSSIBILITY. SCREAMING MAY BE REQUIRED.

AI Used To Recreate Human Brain Waves In Real Time

mm
Published
 on
AI Used To Recreate Human Brain Waves In Real Time
Recently, a team of researchers created a neural network that is able to recreate human brain waves in real-time. As reported by Futurism, the research team, comprised of researchers from the Moscow Institute of Physics and Technology (MIPT) and the Neurobotics corporation, were able to visualize a  person’s brain waves by translating the waves with a computer vision neural network, rendering them as images.
The results of the study were published in bioRxiv, and a video was posted alongside the research paper, which showed how the network reconstructed images. The MIPT research team hopes that the study will help them create post-stroke rehabilitation systems that are controlled by brain waves. In order to create rehabilitative devices for stroke victims, neurobiologists have to study the processes the brain uses to encode information. A critical part of understanding these processes is studying how people perceive video information. According to ZME Science, the current methods of extracting images from brain waves typically analyze the signals originating from the neurons, through the use of implants, or extract images using functional MRI.
The research team from Neurbiotics and MIPT utilized electroencephalography, or EEG, which logs brain waves collected from electrodes placed on the scalp.  In such situations, people often wear devices that track their neural signals while they watch a video or look at pictures. The analysis of brain activity yielded input features that could be used in a machine learning system. The machine learning system was able to reconstruct the images a person witnessed, rendering the images on a screen in real-time.
The experiment was divided into multiple parts. In the experiment’s first phase, the researchers had the subjects watch 10-second clips of YouTube videos for around 20 minutes. There were five different categories that the video were divided into: motorsports, human faces, abstract shapes, waterfalls and moving mechanisms. These different categories can contain a variety of objects. For example, the motorsports category contained clips of snowmobiles and motorcycles.
The research team analyzed the EEG data that was collected while the participants watched the videos. The EEGs displayed specific patterns for each of the different video clips, and this meant that the team could potentially interpret what content the participants were seeing on videos in more or less real-time.
The second phase of the experiment had three categories selected at random. Two neural networks were created to work with these two categories. The first network generated random images that belonged to one of three categories, creating them out of random noise that was refined into an image. Meanwhile, the other network generated noise based on the EEG scans. The data in both of the networks were compared and the randomly generated images were updated based on the EEG noise data, until the generated images became similar to the images that the test subjects were seeing.
After the system had been designed, the researchers tested the program’s ability to visualize brain waves by showing the test subjects videos they hadn’t yet seen from the same categories. The EEGs generated during the second round of viewings were given to the networks, and the networks were able to generate images that could be easily placed into the right category 90% of the time.
The researchers noted that the results of their experiment were surprising because for a long time it was assumed that there wasn’t sufficient information in an EEG to reconstruct the images observed by people. However, the results of the research team proved that it can be done.
Vladimir Konyshev, the head of the Neurorobotics Lab at MIPT, explained that although the research team is currently focused on creating assistive technologies for those who are disabled, the technology they are working could be used to create neural control devices for the general population at some point. Konyshev explained to TechXplore:
“We’re working on the Assistive Technologies project of Neuronet of the National Technology Initiative, which focuses on the brain-computer interface that enables post-stroke patients to control an exoskeleton arm for neurorehabilitation purposes, or paralyzed patients to drive an electric wheelchair, for example. The ultimate goal is to increase the accuracy of neural control for healthy individuals, too.”

No comments:

Post a Comment