Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, February 4, 2020

Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model

So you have identified a problem. This is totally useless unless you have created a solution to prevent that problem from happening. So go back to the drawing board and finish your job.

Personalized risk prediction of symptomatic intracerebral hemorrhage after stroke thrombolysis using a machine-learning model


First Published January 31, 2020 Research Article
Personalized prediction of the risk of symptomatic intracerebral hemorrhage (sICH) after stroke thrombolysis is clinically useful. Machine-learning-based modeling may provide the personalized prediction of the risk of sICH after stroke thrombolysis.
We identified 2578 thrombolysis-treated ischemic stroke patients between January 2013 and December 2016 from a multicenter database, where 70% were used to train models and the remaining 30% were used as the nominal test sets. Another 136 consecutive tissue plasminogen-activated-treated patients between January 2017 and December 2017 from our institute were enrolled as the independent test sets for clinical usability evaluation. Five machine-learning models were developed to predict the risk of sICH after stroke thrombolysis, and the receiving operating characteristic (ROC) was used to compare the prediction performance.
In total, 2237 cases were included in our study, of which 102 had sICH transformation (4.56%). Finally, the three-layer neuro network was selected with the best performance on nominal test sets (AUC = 0.82). The probability of the model score was further categorized into three risk ranks (18.97%, 5.63%, and 0.81%) according to the risk distribution. Implementing our system in clinical practice was associated with reduced computed tomography (CT)-to-treatment time (CTT; 41 min versus 52 min, p < 0.001). All sICH patients were correctly predicted to be within the high-sICH risk rank.
The machine-learning-based modeling is feasible for providing personalized risk prediction of sICH after stroke thrombolysis, and is able to reduce the CTT. More data are needed to further optimize the model and improve the accuracy of prediction.

No comments:

Post a Comment