Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Sunday, February 5, 2017

Pericyte degeneration leads to neurovascular uncoupling and limits oxygen supply to brain

Pericytes are not functioning correctly post-stroke, what the fuck is your doctor doing to correct that?

Capillaries that don't open due to pericytes in the neuronal cascade of death


http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4489.html
Nature Neuroscience
doi:10.1038/nn.4489
Received
Accepted
Published online

Abstract


Pericytes are perivascular mural cells of brain capillaries. They are positioned centrally in the neurovascular unit between endothelial cells, astrocytes and neurons. This position allows them to regulate key neurovascular functions of the brain. The role of pericytes in the regulation of cerebral blood flow (CBF) and neurovascular coupling remains, however, under debate. Using loss-of-function pericyte-deficient mice, here we show that pericyte degeneration diminishes global and individual capillary CBF responses to neuronal stimuli, resulting in neurovascular uncoupling, reduced oxygen supply to the brain and metabolic stress. Neurovascular deficits lead over time to impaired neuronal excitability and neurodegenerative changes. Thus, pericyte degeneration as seen in neurological disorders such as Alzheimer's disease may contribute to neurovascular dysfunction and neurodegeneration associated with human disease.

No comments:

Post a Comment