Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, November 3, 2017

Nanosensors Demystify Brain Chemistry

With these we should be able to answer the question of how exactly neuroplasticity works and make it repeatable on demand. But only if we destroy the existing fucking failures of stroke associations and get RFPs written and funded with foundation grants. Stroke is so fucking easy to solve  if you put your mind to it. I can do this and I'm stroke-addled.
https://www.rdmag.com/news/2017/11/nanosensors-demystify-brain-chemistry?
Fri, 11/03/2017 - 2:09pm
by AVS: Science and Technology of Materials, Interfaces, and Processing
Near-infrared microscopy (top) enables imaging of single-walled carbon nanotube sensors (bottom left) to image dopamine neurotransmission in brain tissue (bottom right).
Nanosensors are incredible information-gathering tools for myriad applications, including molecular targets such as the brain. Neurotransmitter molecules govern brain function through chemistry found deep within the brain, so University of California, Berkeley researchers are developing nanosensors to gain a better understanding of exactly how this all plays out. 
During the AVS 64th International Symposium & Exhibition, being held Oct. 29-Nov. 3, 2017, in Tampa, Florida, Markita del Carpio Landry, a professor of chemical and biomolecular engineering, and Abraham Beyene, a doctoral candidate in the Landry lab, will describe their design and use of near-infrared optical nanosensors to image the neurotransmitter dopamine within the brain.
“Developing sensors for brain chemistry is an exciting area of research that could transform how we diagnose diseases based on imbalances in brain chemistry, such as depression and anxiety,” Landry said. 
These nanosensors are created by combining carbon nanotubes and biomimetic synthetic polymers with the assistance of sound waves to promote the recognition of a selected small-molecule target. The formed sensors produce a fluorescent signal in the presence of their specified neurotransmitter target. Landry and her team are then able to directly quantify the neurotransmitter levels using the fluorescence intensity as a function of time.
“These complexes form nanosensors that fluoresce only within the presence of dopamine, a key neurotransmitter implicated in psychiatric disorders and neurodegenerative diseases such as Parkinson’s and Alzheimer’s disease,” Landry said. “We then build microscopes to detect the fluorescent response of the nanosensor so that we can image the nanosensors in living brain tissue.” 
The researchers are already using their sensors to explore how brain chemistry reacts to antidepressants. “We’re seeing some interesting results of how the antidepressant drug Merital affects the way the brain handles dopamine-based neurotransmission,” Landry said. “These key insights may help us to understand how antipsychotics and antidepressants work, and their side effects as well.” 
A simple method to assess brain chemistry is highly desirable for both research and clinical applications. While diseases such as cancer or diabetes are often diagnosed via methods such as blood tests that provide quantitative measurements of imbalances in blood or tissue chemistry, it’s impractical to take a “brain sample” to assess brain chemistry.
“My lab’s research focuses on the very challenging task of imaging brain chemistry with nanosensors that can report on neurotransmitter concentrations from within the brain and transmit their signals through brain tissue and the cranium,” Landry said. 
Landry and her colleagues are now building a new microscope, a “double infrared excitation-emission” form of fluorescence microscopy for deep brain neurotransmitter imaging, to allow them to image dopamine neurotransmission within the brains of awake and active animals.
“This will provide us with the capability to determine how antidepressants are affecting brain chemistry and to validate their effectiveness in a living animal model,” Landry said.

No comments:

Post a Comment