Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, June 6, 2018

Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective

Self defeating talk like this means stroke survivors will never get recovered with these types of people in charge.

'keeping in mind that recovery of function is limited.' There are no limits, only limited people, another display of lack of leadership.

Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective

Journal of NeuroEngineering and Rehabilitation201815:46
Received: 20 January 2018
Accepted: 7 May 2018
Published: 5 June 2018


Abstract

The past decades have seen rapid and vast developments of robots for the rehabilitation of sensorimotor deficits after damage to the central nervous system (CNS). Many of these innovations were technology-driven, limiting their clinical application and

impact. Yet, rehabilitation robots should be designed on the basis of neurophysiological insights underlying normal and impaired sensorimotor functions, which requires interdisciplinary collaboration and background knowledge.
Recovery of sensorimotor function after CNS damage is based on the exploitation of neuroplasticity, with a focus on the rehabilitation of movements needed for self-independence. This requires a physiological limb muscle activation that can be achieved through functional arm/hand and leg movement exercises and the activation of appropriate peripheral receptors. Such considerations have already led to the development of innovative rehabilitation robots with advanced interaction control schemes and the use of integrated sensors to continuously monitor and adapt the support to the actual state of patients, but many challenges remain. For a positive impact on outcome of function, rehabilitation approaches should be based on neurophysiological and clinical insights, keeping in mind that recovery of function is limited. (Get the hell out of stroke if you have this defeatist attitude)Consequently, the design of rehabilitation robots requires a combination of specialized engineering and neurophysiological knowledge. When appropriately applied, robot-assisted therapy can provide a number of advantages over conventional approaches, including a standardized training environment, adaptable support and the ability to increase therapy intensity and dose, while reducing the physical burden on therapists. Rehabilitation robots are thus an ideal means to complement conventional therapy in the clinic, and bear great potential for continued therapy and assistance at home using simpler devices.
This review summarizes the evolution of the field of rehabilitation robotics, as well as the current state of clinical evidence. It highlights fundamental neurophysiological factors influencing the recovery of sensorimotor function after a stroke or spinal cord injury, and discusses their implications for the development of effective rehabilitation robots. It thus provides insights on essential neurophysiological mechanisms to be considered for a successful development and clinical inclusion of robots in rehabilitation.

1 comment:

  1. NeuroMove, a biofeedback rehab machine, already combines sensory and motor training. Now we are going top have expensive robots duplicate previous work?

    ReplyDelete