Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, August 11, 2021

Sensing Glove to Aid in Stroke Recovery

 The last time I tried putting on a fingerless biking glove it took me 30 minutes. I won't even try a regular glove, they are absolutely impossible. So unless you are one of the lucky ones with no spasticity this is useless.

Sensing Glove to Aid in Stroke Recovery

Researchers at MIT created a sensing glove that can detect small pressure changes along its surface when a wearer grasps something. The glove is threaded with tiny pressure sensors, which are studded with micropillars that create changes in an electrical signal when they bend and deform. This provides an incredibly sensitive measurement of tactile pressure and the glove even detects the wearer’s pulse. The researchers hope that the technology could assist in motor function retraining in patients who have experienced a stroke, and also result in wearables that can measure vital signs more accurately and conveniently than existing devices, such as smart watches.

The technology works thanks to tiny pressure sensors that are incorporated into the fabric glove. These sensors are encrusted with thousands of “micropillars,” which are microscopic gold filaments that deform in response to pressure and provide a corresponding change in an electrical signal that the device can measure. The individiual sensors are highly sensitive, and when applied over a wearer’s fingertip not only provide a measurement of pressure applied to external objects through grasping but also a measurement of the pulse.    

“The simplicity and reliability of our sensing structure holds great promise for a diversity of health care applications, such as pulse detection and recovering the sensory capability in patients with tactile dysfunction,” said Nicholas Fang, a researcher involved in the study, in a press release.

The primary application for the pressure sensing glove is as an aid during stroke rehabilitation, which allows a wearer to fine tune their hand strength and grip, and track progress. So far, the researchers have characterized the readings from the glove while users perform a variety of everyday tasks that require different degrees of dexterity and grip at different points on the hand, from gripping a glass to holding a balloon.

“Some fine motor skills require not only knowing how to handle objects, but also how much force should be exerted,” Fang says. “This glove could provide us more accurate measurements of gripping force for control groups versus patients recovering from stroke or other neurological conditions. This could increase our understanding, and enable control.”

However, the team is also interested in incorporating the sensors into other wearables, such as flexible patches, that can measure physiological parameters such as pulse and blood pressure more accurately than existing health-focused wearables. “Pulse is a mechanical vibration that can also cause deformation of the skin, which we can’t feel, but the pillars can pick up,” said Fang.

Study in Nature Communications: Skin-electrode iontronic interface for mechanosensing

Via: MIT

 

No comments:

Post a Comment