Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, August 12, 2014

Biomarker Could Predict PTSD Risk

Make sure your doctor is following this research. I'm sure they want to test you to see if you are getting PTSD from stroke. Then you will need to follow up with your doctor to see if useful treatments for it have been legalized yet. 
Cannabis Effects on PTSD: Can Smoking Medical Marijuana Reduce Symptoms

Can ecstasy treat the agony of PTSD?

Can a Failed Schizophrenia Drug Prevent PTSD?


 
http://www.biosciencetechnology.com/news/2014/08/biomarker-could-predict-ptsd-risk?
Blood expression levels of genes targeted by the stress hormones called glucocorticoids could be a physical measure, or biomarker, of risk for developing Post-Traumatic Stress Disorder (PTSD), according to a study conducted in rats by researchers at the Icahn School of Medicine at Mount Sinai and published in Proceedings of the National Academy of Sciences (PNAS). That also makes the steroid hormones’ receptor, the glucocorticoid receptor, a potential target for new drugs. 
PTSD is triggered by a terrifying event, either witnessed or experienced. Symptoms may include flashbacks, nightmares and severe anxiety, as well as uncontrollable thoughts about the event. Not everyone who experiences trauma develops PTSD, which is why the study aimed to identify biomarkers that could better measure each person’s vulnerability to the disorder. 
“Our aim was to determine which genes are differentially expressed in relation to PTSD,” said lead investigator Rachel Yehuda, professor of psychiatry and neuroscience and director of the Traumatic Stress Studies Division at the Icahn School of Medicine at Mount Sinai.
“We found that most of the genes and pathways that are different in PTSD-like animals compared to resilient animals are related to the glucocorticoid receptor, which suggests we might have identified a therapeutic target for treatment of PTSD,” said Yehuda, who also heads the Mental Health Patient Care Center and PTSD Research Program at the James J. Peters Veterans Affairs Medical Center in the Bronx.
The research team exposed a group of male and female rats to litter soiled by cat urine, a predatory scent that mimics a life-threatening situation. Most PTSD studies until now have used only male rats. Mount Sinai researchers included female rats in this study since women are more vulnerable than men to developing PTSD. The rats were then categorized based on their behavior one week after exposure to the scent. The authors also examined patterns of gene expression in the blood and in stress-responsive brain regions.
After one week of being exposed to soiled cat litter for 10 minutes, vulnerable rats exhibited higher anxiety and hyperarousal, and showed altered glucocorticoid receptor signaling in all tissues compared with resilient rats. Moreover, some rats were treated with a hormone that activates the glucocorticoid receptor called corticosterone one hour after exposure to the cat urine scent. These rats showed lower levels of anxiety and arousal one week later compared with untreated, trauma-exposed rats.
“PTSD is not just a disorder that affects the brain,” said co-investigator Nikolaos Daskalakis, associate research scientist in the department of psychiatry at the Icahn School of Medicine at Mount Sinai. “It involves the entire body, which is why identifying common regulators is key. The glucocorticoid receptor is the one common regulator that consistently stood out.”

No comments:

Post a Comment