Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:

Tuesday, May 15, 2018

Chemical reaction keeps stroke-damaged brain from repairing itself

Has your doctor done anything with this since it came out 5 years ago? How lazy a bastard is s/he? That is a genuine question to ask your stroke hospital president. Your doctor can reconcile the two competing research studies.
This is fascinating because nitric oxide is so useful in blood pressure management. 85 posts on nitric oxide so your doctor can inform you when you should be getting it post stroke.

Nitric oxide (NO) formed by NO synthase (NOS) is known to be protective in ischemic stroke in mice

Chemical reaction keeps stroke-damaged brain from repairing itself

February 4, 2013, Sanford-Burnham Medical Research Institute 

Nitric oxide, a gaseous molecule produced in the brain, can damage neurons. When the brain produces too much nitric oxide, it contributes to the severity and progression of stroke and neurodegenerative diseases such as Alzheimer's. Researchers at Sanford-Burnham Medical Research Institute recently discovered that nitric oxide not only damages neurons, it also shuts down the brain's repair mechanisms. Their study was published by the Proceedings of the National Academy of Sciences the week of February 4.
"In this study, we've uncovered new clues as to how natural chemical reactions in the brain can contribute to brain damage—loss of memory and cognitive function—in a number of diseases," said Stuart A. Lipton, M.D., Ph.D., director of Sanford-Burnham's Del E. Webb Neuroscience, Aging, and Center and a clinical neurologist.
Lipton led the study, along with Sanford-Burnham's Tomohiro Nakamura, Ph.D., who added that these new molecular clues are important because "we might be able to develop a new strategy for treating stroke and other disorders if we can find a way to reverse nitric oxide's effect on a particular enzyme in ."
Nitric oxide inhibits the neuroprotective ERK1/2 signaling pathway
Learning and memory are in part controlled by NMDA-type glutamate receptors in the brain. These receptors are linked to pores in the nerve cell membrane that regulate the flow of calcium and sodium in and out of the nerve cells. When these get over-activated, they trigger the production of nitric oxide. In turn, nitric oxide attaches to other proteins via a reaction called S-nitrosylation, which was first discovered by Lipton and colleagues. When those S-nitrosylated proteins are involved in cell survival and lifespan, nitric oxide can cause to die prematurely—a hallmark of neurodegenerative disease.
In their latest study, Lipton, Nakamura and colleagues used cultured neurons as well as a living mouse model of stroke to explore nitric oxide's relationship with proteins that help repair neuronal damage. They found that nitric oxide reacts with the enzyme SHP-2 to inhibit a protective cascade of molecular events known as the ERK1/2 signaling pathway. Thus, nitric oxide not only damages neurons, it also blocks the brain's ability to self-repair.

No comments:

Post a Comment