Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, September 3, 2024

Longitudinal study of stroke-induced neuroplasticity using imaging and high-density neural recording

 

But your competent? doctor would already have started listening to brain signals using one of these already to make neuroplasticity repeatable on demand. Add sarcasm tag here.

1. Use nanowires to listen in on single neurons

2. Or lay a grid across the cortex to listen in.

But we have NO stroke leaders, nothing will get done until we get survivors in charge.

Leaders solve problems, they don't run away from them. We have NO leaders in stroke!

Longitudinal study of stroke-induced neuroplasticity using imaging and high-density neural recording

Abstract

The brain has a remarkable ability to undergo spontaneous self-repair in response to an injury or a cortical lesion. This dynamic and lasting restorative process involves a diverse array of neuroplastic mechanisms that are time and location dependent. Lesion-induced neuroplasticity is believed to involve neighboring intact neurons assuming the functional roles of the damaged ones, altering the brain’s activation map. Despite extensive research, there is still a lack of definitive evidence regarding neurons changing their functional response, leading to debates about the exact cellular mechanism of neuroplasticity. Conclusive evidence supporting or refuting functional remapping after stroke requires direct measurements and longitudinal tracking of neural activity at a single-neuron resolution and over chronic periods.

In this work, we employed multi-electrode arrays (NanoElectronic Threads) to record and longitudinally track both the sensory-evoked single-neuron spiking dynamics and population activity with high spatial specificity after a small-scale optically targeted stroke. Our multimodal measurement combined simultaneous laser speckle contrast imaging and hyperspectral reflectance spectroscopy, together with spatially distributed intracortical neural recordings. We found that while hemodynamic activation shifted following the cortical lesion, it no longer correlated with electrical neural activity. Direct neural recording showed a sustained suppression of evoked spiking activity near the lesioned infarct while an enhancement in the more distant cortical regions. Longitudinal tracking of individual neurons uncovered heterogeneous responses underlying the enhanced activity. We observed a distinct subset of neurons that demonstrated a significant upregulation in their sensory-evoked spiking activity which exhibited a stronger correlation with the overall population activity within the local cortical network, suggesting a potential restorative mechanism in response to the lesion. Contrary to the prevailing hypothesis of population-level changes in the peri-infarct region, our findings provide compelling evidence against this notion. Instead, our data reveal that lesion-induced plasticity at the single neuron level is manifested as a selective potentiation of pre-existing functional neurons.

Degree
Doctor of Philosophy
Type
Thesis
Keywords
Electrophysiology, Flexible Electronics, Optical Imaging, Spectroscopy, Neural Recording, Neuroplasticity, Ischemic Stroke,
Citable link to this page

No comments:

Post a Comment