Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 27, 2013

Better treatment for hemorrhagic stroke patients on horizon

A breakthrough that a Great Stroke Association would follow thru with hypothesis, theories and clinical studies.
http://medicalxpress.com/news/2013-03-treatment-patients-horizon.html
Two molecules may provide, for the first time, an indication of which stroke patients will suffer a further, long-term neurological deficit, allowing doctors to tailor treatment more effectively.

Read more at: http://medicalxpress.com/news/2013-03-treatment-patients-horizon.html#jCp
 Two molecules may provide, for the first time, an indication of which stroke patients will suffer a further, long-term neurological deficit, allowing doctors to tailor treatment more effectively.

Subarachnoid haemorrhage (SAH), a form of stroke, affects around half a million people worldwide each year. Nearly 50 per cent of patients who survive the initial haemorrhage die within 30 days, with survivors likely to suffer permanent disability. A study by Dr Sanjaya Kuruppu and Professor Ian Smith of Monash University and clinicians at Harvard Medical School, Dr Mingming Ning and Dr Sherry Chou, has shown that there may be a way to predict the sub-group of SAH patients that will suffer severe long-term disability. By assessing the cerebrospinal fluid of SAH patients, the researchers discovered that in the three days immediately following the stroke, an enzyme, endothelin converting enzyme-1 (ECE-1) and its substrate big endothelin-1 (BigET-1) were elevated in patients that suffered a disability that severely impacted on their capacity to self-care. Dr Sanjaya Kuruppu, of the Monash Department of Biochemistry and Molecular Biology said the discovery was a breakthrough in treating a deadly and unpredictable condition. "This is the first time doctors have had an early and accurate indication that disability will occur, giving them time to focus appropriate and aggressive therapies on this group of patients," Dr Kuruppu said. "More importantly, it provides families with information required to make crucial decisions about subsequent long-term care." As cerebrospinal fluid is routinely monitored following SAH, testing for elevated levels of ECE-1 and BigET-1 would have no negative impact on patients. Professor Ian Smith, Pro Vice-Chancellor (Research and Research Infrastructure) was the lead researcher on the project at Monash. "The next step in bringing this breakthrough to a clinical setting is to develop the technology to enable rapid diagnosis in a hospital setting and we're currently making progress on this," Professor Smith said. The Monash researchers, again in collaboration with Harvard, are planning a larger clinical study in the near future. They aim to determine the exact threshold level of the molecules required to classify a patient as being at high risk of developing long-term disability.

Read more at: http://medicalxpress.com/news/2013-03-treatment-patients-horizon.html#jCp
 Subarachnoid haemorrhage (SAH), a form of stroke, affects around half a million people worldwide each year. Nearly 50 per cent of patients who survive the initial haemorrhage die within 30 days, with survivors likely to suffer permanent disability. A study by Dr Sanjaya Kuruppu and Professor Ian Smith of Monash University and clinicians at Harvard Medical School, Dr Mingming Ning and Dr Sherry Chou, has shown that there may be a way to predict the sub-group of SAH patients that will suffer severe long-term disability. By assessing the cerebrospinal fluid of SAH patients, the researchers discovered that in the three days immediately following the stroke, an enzyme, endothelin converting enzyme-1 (ECE-1) and its substrate big endothelin-1 (BigET-1) were elevated in patients that suffered a disability that severely impacted on their capacity to self-care. Dr Sanjaya Kuruppu, of the Monash Department of Biochemistry and Molecular Biology said the discovery was a breakthrough in treating a deadly and unpredictable condition. "This is the first time doctors have had an early and accurate indication that disability will occur, giving them time to focus appropriate and aggressive therapies on this group of patients," Dr Kuruppu said. "More importantly, it provides families with information required to make crucial decisions about subsequent long-term care." As cerebrospinal fluid is routinely monitored following SAH, testing for elevated levels of ECE-1 and BigET-1 would have no negative impact on patients. Professor Ian Smith, Pro Vice-Chancellor (Research and Research Infrastructure) was the lead researcher on the project at Monash. "The next step in bringing this breakthrough to a clinical setting is to develop the technology to enable rapid diagnosis in a hospital setting and we're currently making progress on this," Professor Smith said. The Monash researchers, again in collaboration with Harvard, are planning a larger clinical study in the near future. They aim to determine the exact threshold level of the molecules required to classify a patient as being at high risk of developing long-term disability.
Subarachnoid haemorrhage (SAH), a form of stroke, affects around half a million people worldwide each year. Nearly 50 per cent of patients who survive the initial haemorrhage die within 30 days, with survivors likely to suffer permanent disability. A study by Dr Sanjaya Kuruppu and Professor Ian Smith of Monash University and clinicians at Harvard Medical School, Dr Mingming Ning and Dr Sherry Chou, has shown that there may be a way to predict the sub-group of SAH patients that will suffer severe long-term disability. By assessing the cerebrospinal fluid of SAH patients, the researchers discovered that in the three days immediately following the stroke, an enzyme, endothelin converting enzyme-1 (ECE-1) and its substrate big endothelin-1 (BigET-1) were elevated in patients that suffered a disability that severely impacted on their capacity to self-care. Dr Sanjaya Kuruppu, of the Monash Department of Biochemistry and Molecular Biology said the discovery was a breakthrough in treating a deadly and unpredictable condition. "This is the first time doctors have had an early and accurate indication that disability will occur, giving them time to focus appropriate and aggressive therapies on this group of patients," Dr Kuruppu said. "More importantly, it provides families with information required to make crucial decisions about subsequent long-term care." As cerebrospinal fluid is routinely monitored following SAH, testing for elevated levels of ECE-1 and BigET-1 would have no negative impact on patients. Professor Ian Smith, Pro Vice-Chancellor (Research and Research Infrastructure) was the lead researcher on the project at Monash. "The next step in bringing this breakthrough to a clinical setting is to develop the technology to enable rapid diagnosis in a hospital setting and we're currently making progress on this," Professor Smith said. The Monash researchers, again in collaboration with Harvard, are planning a larger clinical study in the near future. They aim to determine the exact threshold level of the molecules required to classify a patient as being at high risk of developing long-term disability.

Read more at: http://medicalxpress.com/news/2013-03-treatment-patients-horizon.html#jCp
Subarachnoid haemorrhage (SAH), a form of stroke, affects around half a million people worldwide each year. Nearly 50 per cent of patients who survive the initial haemorrhage die within 30 days, with survivors likely to suffer permanent disability. A study by Dr Sanjaya Kuruppu and Professor Ian Smith of Monash University and clinicians at Harvard Medical School, Dr Mingming Ning and Dr Sherry Chou, has shown that there may be a way to predict the sub-group of SAH patients that will suffer severe long-term disability. By assessing the cerebrospinal fluid of SAH patients, the researchers discovered that in the three days immediately following the stroke, an enzyme, endothelin converting enzyme-1 (ECE-1) and its substrate big endothelin-1 (BigET-1) were elevated in patients that suffered a disability that severely impacted on their capacity to self-care. Dr Sanjaya Kuruppu, of the Monash Department of Biochemistry and Molecular Biology said the discovery was a breakthrough in treating a deadly and unpredictable condition. "This is the first time doctors have had an early and accurate indication that disability will occur, giving them time to focus appropriate and aggressive therapies on this group of patients," Dr Kuruppu said. "More importantly, it provides families with information required to make crucial decisions about subsequent long-term care." As cerebrospinal fluid is routinely monitored following SAH, testing for elevated levels of ECE-1 and BigET-1 would have no negative impact on patients. Professor Ian Smith, Pro Vice-Chancellor (Research and Research Infrastructure) was the lead researcher on the project at Monash. "The next step in bringing this breakthrough to a clinical setting is to develop the technology to enable rapid diagnosis in a hospital setting and we're currently making progress on this," Professor Smith said. The Monash researchers, again in collaboration with Harvard, are planning a larger clinical study in the near future. They aim to determine the exact threshold level of the molecules required to classify a patient as being at high risk of developing long-term disability.

Read more at: http://medicalxpress.com/news/2013-03-treatment-patients-horizon.html#jCp
Subarachnoid haemorrhage (SAH), a form of stroke, affects around half a million people worldwide each year. Nearly 50 per cent of patients who survive the initial haemorrhage die within 30 days, with survivors likely to suffer permanent disability. A study by Dr Sanjaya Kuruppu and Professor Ian Smith of Monash University and clinicians at Harvard Medical School, Dr Mingming Ning and Dr Sherry Chou, has shown that there may be a way to predict the sub-group of SAH patients that will suffer severe long-term disability. By assessing the cerebrospinal fluid of SAH patients, the researchers discovered that in the three days immediately following the stroke, an enzyme, endothelin converting enzyme-1 (ECE-1) and its substrate big endothelin-1 (BigET-1) were elevated in patients that suffered a disability that severely impacted on their capacity to self-care. Dr Sanjaya Kuruppu, of the Monash Department of Biochemistry and Molecular Biology said the discovery was a breakthrough in treating a deadly and unpredictable condition. "This is the first time doctors have had an early and accurate indication that disability will occur, giving them time to focus appropriate and aggressive therapies on this group of patients," Dr Kuruppu said. "More importantly, it provides families with information required to make crucial decisions about subsequent long-term care." As cerebrospinal fluid is routinely monitored following SAH, testing for elevated levels of ECE-1 and BigET-1 would have no negative impact on patients. Professor Ian Smith, Pro Vice-Chancellor (Research and Research Infrastructure) was the lead researcher on the project at Monash. "The next step in bringing this breakthrough to a clinical setting is to develop the technology to enable rapid diagnosis in a hospital setting and we're currently making progress on this," Professor Smith said. The Monash researchers, again in collaboration with Harvard, are planning a larger clinical study in the near future. They aim to determine the exact threshold level of the molecules required to classify a patient as being at high risk of developing long-term disability.

Read more at: http://medicalxpress.com/news/2013-03-treatment-patients-horizon.html#jCp
Subarachnoid haemorrhage (SAH), a form of stroke, affects around half a million people worldwide each year. Nearly 50 per cent of patients who survive the initial haemorrhage die within 30 days, with survivors likely to suffer permanent disability. A study by Dr Sanjaya Kuruppu and Professor Ian Smith of Monash University and clinicians at Harvard Medical School, Dr Mingming Ning and Dr Sherry Chou, has shown that there may be a way to predict the sub-group of SAH patients that will suffer severe long-term disability. By assessing the cerebrospinal fluid of SAH patients, the researchers discovered that in the three days immediately following the stroke, an enzyme, endothelin converting enzyme-1 (ECE-1) and its substrate big endothelin-1 (BigET-1) were elevated in patients that suffered a disability that severely impacted on their capacity to self-care. Dr Sanjaya Kuruppu, of the Monash Department of Biochemistry and Molecular Biology said the discovery was a breakthrough in treating a deadly and unpredictable condition. "This is the first time doctors have had an early and accurate indication that disability will occur, giving them time to focus appropriate and aggressive therapies on this group of patients," Dr Kuruppu said. "More importantly, it provides families with information required to make crucial decisions about subsequent long-term care." As cerebrospinal fluid is routinely monitored following SAH, testing for elevated levels of ECE-1 and BigET-1 would have no negative impact on patients. Professor Ian Smith, Pro Vice-Chancellor (Research and Research Infrastructure) was the lead researcher on the project at Monash. "The next step in bringing this breakthrough to a clinical setting is to develop the technology to enable rapid diagnosis in a hospital setting and we're currently making progress on this," Professor Smith said. The Monash researchers, again in collaboration with Harvard, are planning a larger clinical study in the near future. They aim to determine the exact threshold level of the molecules required to classify a patient as being at high risk of developing long-term disability.

Read more at: http://medicalxpress.com/news/2013-03-treatment-patients-horizon.html#jCp

No comments:

Post a Comment