Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:

Tuesday, May 2, 2017

Voluntary exercise increases adult hippocampal neurogenesis by increasing GSK-3β activity in mice

I keyed off the word voluntary, does this mean that forced exercise does not have neurogenesis effects? If they were forced into a running wheel would neurogenesis still occur? This has a direct impact on our recovery, we need to know the answer. Does your spouse force you to exercise?
Doesn't anyone think before they start a research project?


Voluntary exercise increases cognitive function and adult neurogenesis in hippocampus dentate gyrus.
GSK3β is necessary for the promotion of exercise on cognition and adult neurogenesis.
Insulin pathway is not the main aspect on enhancement of GSK3β activity and adult neurogenesis by exercise.
The dopamine D1 pathway may play the key role in regulating the GSK3β activity and adult neurogenesis after exercise.


Exercise has been proven to promote learning and memory, and is closely related to increased adult neurogenesis in the hippocampus. In our study, the β subunit of Glycogen synthase kinase-3 (GSK3β) can be significantly regulated by exercise, and the modulation of GSK3β activity can enhance adult neurogenesis and memory. To explore the mechanism by which exercise can improve cognitive function and adult neurogenesis, and the role GSK3β plays in this process, we established a mouse model of voluntary exercise to examine the expression and activity of GSK3β, and its associated signaling pathways, in the hippocampus dentate gyrus. The results showed an obvious increase in adult neurogenesis and cognitive functions, and the up-regulation of GSK3β, after exercise. The activity of the insulin pathway, which negatively regulates GSK3β, was also increased. Moreover, our results showed that the dopamine D1 receptor (DARP D1) pathway and adenosine 5’-monophosphate (AMP)-activated protein kinase (AMPK) were also activated, which indicates a relationship between GSK3β and neurogenesis. Overall, our findings demonstrated that voluntary exercise promotes cognition and neurogenesis in the adult mouse dentate gyrus by the regulation of GSK3β expression and activity, which may be implemented through the DARP D1 receptor-signaling pathway.

No comments:

Post a Comment