Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:

Monday, January 9, 2017

Association Between Regular Cannabis Use and Ganglion Cell Dysfunction

But do the benefits of marijuana use for rehab outweigh these negatives? They didn't define regular use so this research is not repeatable. That great stroke association president would be reaming out researchers who don't know how to setup research with proper endpoints.

My 13 reasons for marijuana use post-stroke.  

But don't listen to me, I have absolutely no medical training, you don't need medical training to read and understand research or its' good points.

Association Between Regular Cannabis Use and Ganglion Cell Dysfunction

Schwitzer T, Schwan R, Albuisson E, Giersch A, Lalanne L, Angioi-Duprez K, Laprevote V; JAMA Ophthalmology (Dec 2016)

Importance Because cannabis use is a major public health concern and cannabis is known to act on central neurotransmission, studying the retinal ganglion cells in individuals who regularly use cannabis is of interest.
Objective To determine whether the regular use of cannabis could alter the function of retinal ganglion cells in humans.
Design, Setting, and Participants For this case-control study, individuals who regularly use cannabis, as well as healthy controls, were recruited, and data were collected from February 11 to October 28, 2014. Retinal function was used as a direct marker of brain neurotransmission abnormalities in complex mental phenomena.
Main Outcomes and Measures Amplitude and implicit time of the N95 wave on results of pattern electroretinography.
Results Twenty-eight of the 52 participants were regular cannabis users (24 men and 4 women; median age, 22 years [95% CI, 21-24 years]), and the remaining 24 were controls (20 men and 4 women; median age, 24 years [95% CI, 23-27 years]). There was no difference between groups in terms of age (P = .13) or sex (P = .81). After adjustment for the number of years of education and alcohol use, there was a significant increase for cannabis users of the N95 implicit time on results of pattern electroretinography (median, 98.6 milliseconds [95% CI, 93.4-99.5]) compared with controls (median, 88.4 milliseconds [95% CI, 85.0-91.1]), with 8.4 milliseconds as the median of the differences (95% CI, 4.9-11.5; P < .001, Wald logistic regression). A receiver operating characteristic curve analysis (area under the curve, 0.84 [95% CI, 0.73-0.95]; P < .001) revealed, for a cutoff value of 91.13 milliseconds, a sensitivity of 78.6% (95% CI, 60.5%-89.8%) and a specificity of 75.0% (95% CI, 55.1%-88.0%) for correctly classifying both cannabis users and controls in their corresponding group. The positive predictive value was 78.6% (95% CI, 60.5%-89.8%), and the negative predictive value was 75.0% (95% CI, 55.1%-88.0%).
Conclusions and Relevance Our results demonstrate a delay in transmission of action potentials by the ganglion cells in regular cannabis users, which could support alterations in vision. Our findings may be important from a public health perspective since they could highlight the neurotoxic effects of cannabis use on the central nervous system as a result of how it affects retinal processing.

No comments:

Post a Comment