Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Saturday, November 5, 2016

Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer

Curcumin would be good for stroke survivors but your doctor will do nothing about it.

Enhancing absorption and bioavailability of curcumin and turmeric

Nanomicelles loaded with doxorubicin and curcumin for alleviating multidrug resistance in lung cancer

Authors Gu Y, Li J, Li Y, Song L, Li D, Peng LP, Wan Y, Hua SC
Received 31 July 2016
Accepted for publication 4 October 2016
Published 3 November 2016 Volume 2016:11 Pages 5757—5770
DOI https://doi.org/10.2147/IJN.S118568
Checked for plagiarism Yes
Review by Single-blind
Peer reviewers approved by Dr Akshita Wason
Peer reviewer comments 4
Editor who approved publication: Dr Linlin Sun
Yue Gu,1,* Jing Li,2,* Yang Li,1 Lei Song,1 Dan Li,1 Liping Peng,1 Ying Wan,3 Shucheng Hua1

1Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Jilin University, Changchun, Jilin, 2Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, 3College of Life Sciences and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China

*These authors contributed equally to this work

Purpose: A new type of polymeric micelle (PM) was assembled using a polyethylene glycol (PEG)-linked (PEGylated) amphiphilic copolymer and d-tocopheryl PEG1000 succinate (TPGS1000). The micelles were used to deliver doxorubicin (DOX) and curcumin (CUR) for alleviating multidrug resistance (MDR) in lung cancer cells while enhancing the therapeutic efficacy of DOX.
Methods: Micelles loaded with DOX and CUR were assembled using a film-forming technique. Micelles were used to treat A549/Adr cells to find out whether micelles had the ability to reverse the MDR of A549/Adr cells. Some investigations were conducted using tumor-bearing mice to assess whether these micelles had enhanced antitumor efficacy as compared to DOX alone or the combination of DOX and CUR.
Results: Some micelles (DOX + CUR)–PMs had a small average size of about 17 nm and showed definite ability to deliver both DOX and CUR into DOX-resistant A549/Adr cells. The PMs had high cytotoxicity toward A549/Adr cells when the applied equivalent DOX dose was 1 µg/mL or higher. The cellular uptake of (DOX + CUR)–PMs into A549/Adr cells was found to be associated with an energy-dependent, caveolae-mediated, and clathrin-independent mechanism. (DOX + CUR)–PMs helped to prolong the circulation of DOX or CUR as compared to the individual administration of DOX or CUR, and they exhibited high inhibiting efficiency against the growth of tumors and were able to reduce the side effects of DOX.
Conclusion: TPGS1000 and CUR could synergistically reverse DOX-resistance of A549/Adr cells. In vivo examinations confirmed that the micelles had the capability to increase the plasma concentration of DOX or CUR, as well as to prolong their respective blood circulation. These micelles were able to significantly inhibit tumor growth in Lewis lung carcinoma tumor-bearing mice while reducing the side effects of DOX. The micelles showed potential in the treatment of lung cancer.

No comments:

Post a Comment