Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, November 15, 2016

Effectiveness of robotic-assisted gait training in stroke rehabilitation: A retrospective matched control study

Pretty much useless since spontaneous recovery is going on during this time. No decent way to split which piece caused the improvement.

http://www.sciencedirect.com/science/article/pii/S101370251630046X
Open Access funded by Hong Kong Physiotherapy Association
Under a Creative Commons license

Abstract

Objective

This study aimed to evaluate the effectiveness of robotic-assisted gait training (RAGT) in improving functional outcomes among stroke patients.

Design

This was a retrospective matched control study.

Setting

This study was conducted in an extended inpatient rehabilitation centre.

Patients and intervention

There were 14 patients with subacute stroke (4–31 days after stroke) in the RAGT group. Apart from traditional physiotherapy, the RAGT group received RAGT. The number of sessions for RAGT ranged from five to 33, and the frequency was three to five sessions per week, with each session lasting for 15–30 minutes. In the control group, there were 27 subacute stroke patients who were matched with the RAGT group in terms of age, days since stroke, premorbid ambulatory level, functional outcomes at admission, length of training, and number of physiotherapy sessions received. The control group received traditional physiotherapy but not RAGT.

Outcome measures

Modified Functional Ambulation Category (MFAC), Modified Rivermead Mobility Index (MRMI), Berg's Balance Scale (BBS), and Modified Barthel Index (MBI) to measure ambulation, mobility, balance, and activities of daily living, respectively.

Results

Both RAGT and control groups had significant within-group improvement in MFAC, MRMI, BBS, and MBI. However, the RAGT group had higher gain in MFAC, MRMI, BBS, and MBI than the control group. In addition, there were significant between-group differences in MFAC, MRMI, and BBS gains (p = 0.026, p = 0.010, and p = 0.042, respectively). There was no significant between-group difference (p = 0.597) in MBI gain (p = 0.597).

Conclusion

The results suggested that RAGT can provide stroke patients extra benefits in terms of ambulation, mobility, and balance. However, in the aspect of basic activities of daily living, the effect of RAGT on stroke patients is similar to that of traditional physiotherapy.

Keywords

  • gait;
  • physiotherapy;
  • rehabilitation;
  • robotic;
  • stroke

Introduction

Stroke, also known as cerebrovascular accident, is an acute disturbance of focal or global cerebral function, with signs and symptoms lasting more than 24 hours or leading to death, presumably of vascular origin [1]. In Hong Kong, around 25,000 stroke patients are admitted to public hospitals under the Hong Kong Hospital Authority annually [2]. Although mortality and morbidity among stroke patients have declined due to medical advances, impacts on stroke survivors and community remain significant. The most widely recognized impairment caused by stroke is motor impairment, which restricts muscle movement or mobility function [3]. Many stroke patients experience difficulties in walking, and improving walking is one of the main goals of rehabilitation [4]. Since it was shown that the process of spontaneous recovery is almost completed within 6–10 weeks [5], early rehabilitation is essential to maximize the function of patients after stroke. Recent evidence suggests that high-intensity repetitive task-specific practice might be the most effective principle when trying to promote motor recovery after stroke [3]. Robotic-assisted gait training (RAGT) is a new global physiotherapy technology that applies the high-intensity repetitive principle to improve mobility of patients with stroke or other neurological disorders. The advantage of RAGT may be the reduction of the effort required by therapists compared with treadmill training with partial bodyweight support, as they no longer need to set the paretic limbs or assist in trunk movements [6]. People who receive electromechanical-assisted gait training in combination with physiotherapy after stroke are more likely to achieve independent walking than people who receive gait training without these devices [7]. More specifically, people in the first 3 months after stroke and those who are not able to walk seem to benefit most from this type of intervention [7]. Evidence also shows that the use of RAGT in stroke patients has positive effects on their balance [8].
Randomized controlled trials and systemic reviews have demonstrated the effectiveness of RAGT for stroke patients in terms of functional outcomes such as walking ability [9], [10] and [11] and balance [8] and [11]. However, limited published evidence is available on the effectiveness of RAGT in improving other functioning activities such as basic activities of daily living (ADL) [12] and [13]. If RAGT can improve walking ability and balance of stroke patient, can RAGT also improve basic ADL of stroke patients? The hierarchical pattern of progression in basic ADL is in the following order: bathing, dressing, transferring, toileting, controlling continence, and feeding, with bathing being the most complex task and feeding the least [14]; however, walking ability and balance contribute to parts of basic ADL. Moreover, factors that make the greatest contribution to ADL after stroke were found to be balance, upper extremity function, and perceptual and cognitive functions [15]. If RAGT can improve ADL of stroke patients, which of the above factors is/are enhanced by RAGT? Can RAGT also enhance perceptual and cognitive functions of stroke patients? Hence, controlled studies are necessary to address these research questions. A retrospective study conducted by Dundar et al [13] investigated the effect of robotic training in functional independence measure and other functional outcomes of patients with subacute and chronic stroke. However, the study concluded that combining robotic training with conventional physiotherapy produced better improvement than conventional physiotherapy in terms of functional independence measure, but not walking status or balance. The result was opposite to the specificity of training principle [16] that gait training should produce more positive effect for walking and balance than ADL. Hence, this study intends to investigate the effectiveness of RAGT in improving functional mobility and basic ADL for stroke patients, and hopefully can lead to further randomized controlled studies to investigate the impact of RAGT on basic ADL.

More at link

No comments:

Post a Comment