Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, April 2, 2019

Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition

Does no one working on brain injuries understand that protocols are needed, NOT guidelines. Guidelines are lazy and an effective way not to take responsibility for patient recovery. 

Guidelines for the Management of Pediatric Severe Traumatic Brain Injury, Third Edition

Update of the Brain Trauma Foundation Guidelines

Kochanek, Patrick M., MD, MCCM1; Tasker, Robert C., MA, MD, FRCP2; Carney, Nancy, PhD3; Totten, Annette M., PhD4; Adelson, P. David, MD, FACS, FAAP, FAANS5; Selden, Nathan R., MD, PhD, FACS, FAAP6; Davis-O’Reilly, Cynthia, BS7; Hart, Erica L., MST8; Bell, Michael J., MD9; Bratton, Susan L., MD, MPH, FAAP10; Grant, Gerald A., MD11; Kissoon, Niranjan, MD, FRCP(C), FAAP, MCCM, FACPE12; Reuter-Rice, Karin E., PhD, CPNP-AC, FCCM, FAAN13; Vavilala, Monica S., MD14; Wainwright, Mark S., MD, PhD15
Pediatric Critical Care Medicine: March 2019 - Volume 20 - Issue 3S - p S1–S82
doi: 10.1097/PCC.0000000000001735
Supplement
Free
SDC
Back to Top | Article Outline

Severe Traumatic Brain Injury in Infants, Children, and Adolescents in 2019: Some Overdue Progress, Many Remaining Questions, and Exciting Ongoing Work in the Field of Traumatic Brain Injury Research

In this Supplement to Pediatric Critical Care Medicine, we are pleased to present the Third Edition of the Guidelines for the Management of Pediatric Severe Traumatic Brain Injury (TBI). This body of work updates the Second Edition of the guidelines that was published in 2012 (1). It represents a substantial effort by a multidisciplinary group of individuals assembled to reflect the team approach to the treatment of these complex, critically ill patients that is essential to optimizing critical care and improving outcomes. This work also represents the strong and always-evolving partnership between investigators from the medical and research communities, forged in Chicago in 2000, from which the first pediatric TBI guidelines were developed. The mutual trust and respect we share have been the foundation of our commitment to bringing evidence-based care to children with TBI.
Updating these guidelines was particularly exciting to the individuals who have participated in the previous two editions because several new studies have been published which begin to address a number of major gaps in the pediatric TBI literature—gaps that were specifically identified as targets for future research in earlier editions. For example, we are now able to include reports on the effects of commonly used sedatives and analgesics on intracranial pressure (ICP). Similarly, initial head-to-head comparisons of the influence of agents in routine “real world” use such as hypertonic saline (HTS), fentanyl, and others now inform these guidelines (2 , 3). A total of 48 new studies were included in this Third Edition. Although some progress has been made and should be celebrated, overall the level of evidence informing these guidelines remains low. High-quality randomized studies that could support level I recommendations remain absent; the available evidence produced only three level II recommendations, whereas most recommendations are level III, supported by low-quality evidence.
Based in part on a number of requests from the readership to individual clinical investigators, we have included a companion article in the regular pages of Pediatric Critical Care Medicine that presents a “Critical Pathway” algorithm of care for both first-tier and second-tier (refractory intracranial hypertension) approaches. The algorithm reflects both the evidence-based recommendations from these guidelines and consensus-based expert opinion, vetted by the clinical investigators, where evidence was not available. An algorithm was provided in the First but not Second Editions of the guidelines, and we believe that given the new reports available, along with the existing gaps in evidence, a combination of evidence-based and consensus-based recommendations provides additional and much-needed guidance for clinicians at the bedside. The algorithm also addresses a number of issues that are important but were not previously covered in the guidelines, given the lack of research and the focus on evidence-based recommendations. This includes addressing issues such as a stepwise approach to elevated ICP, differences in tempo of therapy in different types of patients, scenarios with a rapidly escalating need for ICP-directed therapy in the setting of impending herniation, integration of multiple monitoring targets, and other complex issues such as minimal versus optimal therapeutic targets and approaches to weaning therapies. We hope that the readership finds the algorithm document helpful, recognizing that it represents a challenging albeit important step.
Designing and developing this pediatric TBI evidence-based guidelines document required an expert administrative management team, and to that end, we are extremely grateful to the staff of the Pacific Northwest Evidence-based Practice Center, Oregon Health & Science University, for their vital contribution to this work. We are also grateful to the Brain Trauma Foundation and the Department of Defense for supporting the development and publication of these guidelines documents. We are grateful to the endorsing societies for recognizing the importance of this work and for the considerable work of the clinical investigators in constructing the final document. We are also pleased to have collaborated with the Congress of Neurological Surgeons and the journal Neurosurgery that is copublishing the Executive Summary document of these guidelines for its readership. We are also grateful to Hector Wong for serving as Guest Editor, along with the external reviewers of this final document. Finally, we thank each of the clinical investigators and coauthors on this project. We believe that the considerable uncompensated time and effort devoted to this important project will help to educate clinicians worldwide and enhance the outcomes of children with severe TBI. Clinical investigators provided Conflict of Interest Disclosures at the beginning of the process, which were re-reviewed at the time of publication. No clinical investigator made inclusion decisions or provided assessments on publications for which they were an author.
Looking forward, it is important to recognize that these guidelines were written as the Approaches and Decisions in Acute Pediatric TBI Trial (ADAPT) (4–6), one of the most important in the field of pediatric TBI, was coming to a close. The ADAPT completed enrollment of 1,000 cases of severe pediatric TBI and is one example of the recent heightened general interest in TBI as a disease. This new interest in the importance of TBI has emerged in part from the recognition of the high prevalence of TBI across the injury severity spectrum, particularly concussion, and from the need for new classification systems and new trial design for TBI in both children and adults (7 , 8). In addition, the emerging links between TBI and a number of neurodegenerative diseases have broadened the interest in TBI, have led to additional support of TBI research, and have produced an unprecedented level of research in TBI and a quest for new therapies (9–11). We expect that the results of ADAPT, along with those of other ongoing and recently completed research in the field, will help provide new insight and clarity into the acute medical management (MM) of infants, children, and adolescents with severe TBI, and mandate further refinement of the recommendations in these documents. We know that we speak for the entire team of clinical investigators in welcoming the opportunity to incorporate additional high-level evidence into future updates of these guidelines.

No comments:

Post a Comment