Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Showing posts with label laminin. Show all posts
Showing posts with label laminin. Show all posts

Tuesday, November 16, 2021

Laminin regulates oligodendrocyte development and myelination

 

Do we need this after a stroke? Have we demyelinated neurons in the brain? What does your doctor know about this and what is the protocol to fix it?   

Laminin regulates oligodendrocyte development and myelination

First published: 12 November 2021

Funding information: National Heart, Lung, and Blood Institute, Grant/Award Number: R01HL146574; National Institute on Aging, Grant/Award Numbers: R21AG064422, R21AG073862, RF1AG065345

Abstract

Oligodendrocytes are the cells that myelinate axons and provide trophic support to neurons in the CNS. Their dysfunction has been associated with a group of disorders known as demyelinating diseases, such as multiple sclerosis. Oligodendrocytes are derived from oligodendrocyte precursor cells, which differentiate into premyelinating oligodendrocytes and eventually mature oligodendrocytes. The development and function of oligodendrocytes are tightly regulated by a variety of molecules, including laminin, a major protein of the extracellular matrix. Accumulating evidence suggests that laminin actively regulates every aspect of oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination. How can laminin exert such diverse functions in oligodendrocytes? It is speculated that the distinct laminin isoforms, laminin receptors, and/or key signaling molecules expressed in oligodendrocytes at different developmental stages are the reasons. Understanding molecular targets and signaling pathways unique to each aspect of oligodendrocyte biology will enable more accurate manipulation of oligodendrocyte development and function, which may have implications in the therapies of demyelinating diseases. Here in this review, we first introduce oligodendrocyte biology, followed by the expression of laminin and laminin receptors in oligodendrocytes and other CNS cells. Next, the functions of laminin in oligodendrocyte biology, including survival, migration, proliferation, differentiation, and myelination, are discussed in detail. Last, key questions and challenges in the field are discussed. By providing a comprehensive review on laminin's roles in OL lineage cells, we hope to stimulate novel hypotheses and encourage new research in the field.

 

Monday, May 29, 2017

Discovery could help scientists stop the "death cascade" of neurons after a stroke

Ask your doctor and hospital what has been done with this information since it came out in Jan 2009. Part of the solution to this problem is quite simple; reduce the size of the tPA bolus substantially because you are using magnetic nanoparticles to deliver it straight to the clot.
https://phys.org/news/2009-01-discovery-scientists-death-cascade-neurons.html
(PhysOrg.com) -- Distressed swimmers often panic, sapping the strength they need to keep their heads above water until help arrives. When desperate for oxygen, neurons behave in a similar way. They freak out, stupidly discharging energy until they drown in a sea of their own extruded salts. Every year, millions of victims of stroke or brain trauma suffer permanent brain damage because of this mad rush to oblivion that begins once a part of the brain is deprived of blood.
It is well known that a ubiquitous cell receptor drives these oxygen-starved neurons’ lemming-like behavior. But this particular receptor, for the neurotransmitter glutamate, is also responsible for the rapid transmission of information between neurons required for all cognition, among other things. Shutting it off has serious consequences, like coma. Now, a team of scientists at The Rockefeller University has identified a single subunit of this receptor that drives neuronal death. This new discovery suggests that drugs targeting a specific subunit of the complex glutamate receptor might be able to slow brain damage without disrupting other crucial brain functions.
Saving neurons. When normal neurons (top) are subjected to stroke-like damage, they quickly deteriorate and die (center). New research shows that a small portion of the cell’s glutamate receptors, the KA1 subunit, is responsible for this …more
“We have found that you can make mice resistant to this kind of cell death by blocking one piece of the receptor without the terrible side effects you get by blocking the whole thing,” says Sidney Strickland, head of the Laboratory of Neurobiology and Genetics, who directed the research. “Now we can start exploring potential drugs to do that in humans.” The neuronal panic that occurs when a clot or other insult blocks the flow of blood to part of the brain is called excitotoxic neurodegeneration. It results in the brain cells spitting out glutamate, which then accumulates in the synapses between neurons and stimulates the release of more glutamate. It’s a vicious cycle that kills the cells quickly and continues until blood flow is restored. Doctors often treat stroke victims by administering a heavy dose of a clot-buster called tissue plasminogen activator (tPA), a protein that can stimulate the dissolution of clots. Ironically, however, the same drug that does this crucial clot-busting also accelerates the panicky process that kills neurons, research by Strickland and others has shown. Investigating exactly how tPA does that is what led Strickland’s team to the recent discovery.
Neurons are typically couched in laminin, an extracellular matrix protein known to be involved with tPA in the neuronal “death cascade.” The Strickland lab’s experiments, published in The Journal of Cell Biology, show that tPA produces an enzyme that degrades laminin into toxic products that kill the neurons in their midst, specifically by stimulating the production of one of five subunits for a particular kind of glutamate receptor. The overproduction of this specific subunit, KA1, makes the cells hypersensitive to glutamate, which fans the glutamate frenzy leading to their death.
To better understand the process, Zu-Lin Chen and other colleagues at Rockefeller in the Strickland lab and at the University of Leicester in England designed lines of genetically modified mice that lacked either tPA or laminin specifically in the hippocampus, a region of the brain often damaged by stroke. To their surprise, they found that mice without laminin were protected from the typical neural degeneration that follows a simulated stroke in regular mice. They also found that mice with laminin but not tPA were relatively protected.
But when they injected degraded laminin into mouse brains without laminin or tPA they found a similar overproduction of the subunit of the glutamate receptor that they measured when inducing stroke in normal mice. The problem: Laminin, once degraded by tPA, prompts the proliferation of the receptor subunit that makes the cells suicidally sensitive to glutamate. By preventively injecting a molecule that disables that particular subunit, they were able to dramatically reduce the cell death following a stroke. A big plus: The treated mice did not suffer the severe side effects that come with blocking the entire glutamate receptor.
Whether this will turn into a therapy that can be applied after a stroke is uncertain.
“Can you do it after the fact? That will be a question,” Strickland says. “Cell death happens pretty quickly. But it’s an interesting avenue to pursue.”
Reference: The Journal of Cell Biology 183(7): 1299-1313 (December 29, 2008), jcb.rupress.org/cgi/content/abstract/183/7/1299
Provided by Rockefeller University