Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Showing posts with label Optic Tract. Show all posts
Showing posts with label Optic Tract. Show all posts

Friday, July 16, 2021

Optic Tract Shrinkage Limits Visual Restoration After Occipital Stroke

 So you described a problem, How are YOU going to solve it? In programming once I was given a problem to solve I was never allowed to walk away from it. Either I fixed it or described the project needed that could fix it.

Optic Tract Shrinkage Limits Visual Restoration After Occipital Stroke

Originally publishedhttps://doi.org/10.1161/STROKEAHA.121.034738Stroke. ;0:STROKEAHA.121.034738

Background and Purpose:

Damage to the adult primary visual cortex (V1) causes vision loss in the contralateral visual hemifield, initiating a process of trans-synaptic retrograde degeneration. The present study examined functional implications of this process, asking if degeneration impacted the amount of visual recovery attainable from visual restoration training in chronic patients, and if restoration training impacted optic tract (OT) shrinkage.

Methods:

Magnetic resonance imaging was used to measure OT volumes bilaterally in 36 patients with unilateral occipital stroke. From OT volumes, we computed laterality indices (LI), estimating the stroke-induced OT shrinkage in each case. A subset of these chronic patients (n=14, 13±6 months poststroke) underwent an average of nearly 1 year of daily visual restoration training, which repeatedly stimulated vision in their blind field. The amount of visual field recovery was quantified using Humphrey perimetry, and post training magnetic resonance imaging was used to assess the impact of training on OT shrinkage.

Results:

OT LI was correlated with time since stroke: it was close to 0 (no measurable OT shrinkage) in subacute participants (<6 months poststroke) while chronic participants (>6 months poststroke) exhibited LI >0, but with significant variability. Visual training did not systematically alter LI, but chronic patients with baseline LI≈0 (no OT shrinkage) exhibited greater visual field recovery than those with LI>0.

Conclusions:

Unilateral OT shrinkage becomes detectable with magnetic resonance imaging by ≈7 months poststroke, albeit with significant interindividual variability. Although visual restoration training did not alter the amount of degeneration already sustained, OT shrinkage appeared to serve as a biomarker of the potential for training-induced visual recovery in chronic cortically blind patients.