Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Showing posts with label immunodepression. Show all posts
Showing posts with label immunodepression. Show all posts

Saturday, May 21, 2022

Immunodepression, Infections, and Functional Outcome in Ischemic Stroke

 

Your doctor needs to get human testing initiated so we know specifically how to prevent problems from this. 

Immunodepression, Infections, and Functional Outcome in Ischemic Stroke

Originally publishedhttps://doi.org/10.1161/STROKEAHA.122.038867Stroke. 2022;53:1438–1448

Stroke remains one of the main causes of mortality and morbidity worldwide. Immediately after stroke, a neuroinflammatory process starts in the brain, triggering a systemic immunodepression mainly through excessive activation of the autonomous nervous system. Manifestations of immunodepression include lymphopenia but also dysfunctional innate and adaptive immune cells. The resulting impaired antibacterial defenses render patients with stroke susceptible to infections. In addition, other risk factors like stroke severity, dysphagia, impaired consciousness, mechanical ventilation, catheterization, and older age predispose stroke patients for infections. Most common infections are pneumonia and urinary tract infection, both occur in ≈10% of the patients. Especially pneumonia increases unfavorable outcome and mortality in patients with stroke; systemic effects like hypotension, fever, delay in rehabilitation are thought to play a crucial role. Experimental and clinical data suggest that systemic infections enhance autoreactive immune responses against brain antigens and thus negatively affect outcome but convincing evidence is lacking. Prevention of poststroke infections by preventive antibiotic therapy did not improve functional outcome after stroke. Immunomodulatory approaches counteracting immunodepression to prevent stroke-associated pneumonia need to account for neuroinflammation in the ischemic brain and avoid further tissue damage. Experimental studies discovered interesting targets, but these have not yet been investigated in patients with stroke. A better understanding of the pathobiology may help to develop optimized approaches of preventive antibiotic therapy or immunomodulation to effectively prevent stroke-associated pneumonia while improving long-term outcome after stroke. In this review, we aim to characterize epidemiology, risk factors, cause, diagnosis, clinical presentation, and potential treatment of poststroke immunosuppression and associated infections.

 

Stroke-Induced Immunodepression

Your doctor needs to get human testing initiated so we know specifically how to prevent problems from this. 

Stroke-Induced Immunodepression

Experimental Evidence and Clinical Relevance
Originally publishedhttps://doi.org/10.1161/01.STR.0000251441.89665.bcStroke. 2007;38:770–773

Abstract

Stroke affects the normally well-balanced interplay of the 2 supersystems: the nervous and the immune system. Recent research elucidated some of the involved signals and mechanisms and, importantly, was able to demonstrate that brain-immune interactions are highly relevant for functional outcome after stroke. Immunodepression after stroke increases the susceptibility to infection, the most relevant complication in stroke patients. However, immunodepression after stroke may also have beneficial effects, for example, by suppressing autoaggressive responses during lesion-induced exposure of central nervous system-specific antigens to the immune system. Thus, before immunomodulatory therapy can be applied to stroke patients, we need to understand better the interaction of brain and immune system after focal cerebral ischemia. Until then, anticipating an important consequence of stroke-induced immunodepression, bacterial infection, preventive antibiotic strategies have been proposed. In mouse experiments, preventive antibiotic treatment dramatically improves mortality and outcome. Results of clinical studies on this issue are contradictory at present, and larger trials are needed to settle the question whether (and which) stroke patients should be preventively treated. Nevertheless, clinical evidence is emerging demonstrating that stroke-induced immunodepression in humans not only exists, but has very similar features to those characterized in rodent experiments.