Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, October 12, 2021

Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial

In what multiverse do you live where stroke hospitals will buy powered exoskeletons? Your objective was to determine efficacy but you obviously failed at that task.

Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial

Abstract

Background

Individuals requiring greater physical assistance to practice walking complete fewer steps in physical therapy during subacute stroke rehabilitation. Powered exoskeletons have been developed to allow repetitious overground gait training for individuals with lower limb weakness. The objective of this study was to determine the efficacy of exoskeleton-based physical therapy training during subacute rehabilitation for walking recovery in non-ambulatory patients with stroke.

Methods

An assessor-blinded randomized controlled trial was conducted at 3 inpatient rehabilitation hospitals. Patients with subacute stroke (< 3 months) who were unable to walk without substantial assistance (Functional Ambulation Category rating of 0 or 1) were randomly assigned to receive exoskeleton-based or standard physical therapy during rehabilitation, until discharge or a maximum of 8 weeks. The experimental protocol replaced 75% of standard physical therapy sessions with individualized exoskeleton-based sessions to increase standing and stepping repetition, with the possibility of weaning off the device. The primary outcome was walking ability, measured using the Functional Ambulation Category. Secondary outcomes were gait speed, distance walked on the 6-Minute Walk Test, days to achieve unassisted gait, lower extremity motor function (Fugl-Meyer Assessment), Berg Balance Scale, Patient Health Questionnaire, Montreal Cognitive Assessment, and 36-Item Short Form Survey, measured post-intervention and after 6 months.

Results

Thirty-six patients with stroke (mean 39 days post-stroke) were randomized (Exoskeleton = 19, Usual Care = 17). On intention-to-treat analysis, no significant between-group differences were found in the primary or secondary outcomes at post-intervention or after 6 months. Five participants randomized to the Exoskeleton group did not receive the protocol as planned and thus exploratory as-treated and per-protocol analyses were undertaken. The as-treated analysis found that those adhering to exoskeleton-based physical therapy regained independent walking earlier (p = 0.03) and had greater gait speed (p = 0.04) and 6MWT (p = 0.03) at 6 months; however, these differences were not significant in the per-protocol analysis. No serious adverse events were reported.

Conclusions

This study found that exoskeleton-based physical therapy does not result in greater improvements in walking independence than standard care but can be safely administered at no detriment to patient outcomes.

Clinical Trial Registration The Exoskeleton for post-Stroke Recovery of Ambulation (ExStRA) trial was registered at ClinicalTrials.gov (NCT02995265, first registered: December 16, 2016)

Background

Recovering the ability to walk is commonly cited by patients with stroke as a top priority of both rehabilitation and research efforts [1, 2]. Besides predicting long-term mobility and community reintegration after stroke [3, 4], walking outcomes are also associated with cognitive performance, post-stroke depression, and quality of life [5,6,7]. With implications for so many post-stroke outcomes, refining rehabilitation efforts to optimize the timeliness and degree of walking recovery after stroke remains a top priority.

It is recommended that early stroke rehabilitation should be goal-oriented, repetitive, progressive, and task-specific to take advantage of neuroplastic recovery and make gains in mobility and walking [8, 9]. However, dependent patients requiring substantial assistance from one or two therapists are the least likely to achieve these guidelines and take very few steps during stroke rehabilitation; studies observing inpatient stroke rehabilitation have reported as low as 8 minutes of physical activity and progression from 6 to only 16 completed steps during physical therapy [10, 11]. Even with the introduction of body weight-supported treadmill training in stroke rehabilitation and promising findings for walking recovery, the physical demand of having multiple therapists involved to assist moving the lower extremities has limited its clinical application [12, 13]. With such minimal levels of walking practice, it is unsurprising that nearly half of patients admitted for stroke are discharged from rehabilitation without the ability to walk independently [14], which in turn influences meaningful outcomes such as discharge location and return-to-work [4, 15]. Consequently, it is those patients who are more impaired and unable to walk independently who should be the target of novel interventions and research [16]. Repetition and progression should be included as key components of such efforts.

Powered exoskeletons have been commercially developed to assist and automate overground walking for individuals with lower extremity weakness. Such devices strap around the lower limbs and generate joint motion using embedded motors. They may allow patients to achieve the higher duration and repetition of stepping practice recommended for stroke rehabilitation, while offloading therapists’ physical burden. However, previous research of treadmill-based robotic devices [e.g., Lokomat (Hocoma, Zurich, Switzerland)] has found mixed results for gait recovery; several randomized trials did not did not find superior effects of robotic training on walking outcomes [17, 18], yet several reviews have found improved walking independence [19, 20]. Powered exoskeletons may offer more realistic task-specific and goal-oriented overground walking practice than treadmill-based devices, as they address the criticism that suspended robotic devices lack variability in movement and encourage passive participation [16]. Early research of powered exoskeletons in stroke rehabilitation has shown promising findings, though only a few randomized controlled studies have been conducted and none have focused explicitly on non-ambulatory patients during the subacute phase of recovery [21]. From the previous reviews of electromechanically-assisted gait training, it has been recommended that further research and therapy with robotics should only be used with patients in the early phase of stroke recovery and who require more physical assistance to walk [16, 20, 22].

Although early research of powered exoskeletons has shown they can be safely used as an adjunct therapy [21, 23], limited research has investigated their effect when integrated within the standard physical therapy component of subacute stroke rehabilitation. The primary objective of this study was to assess the effect of an exoskeleton-based physical therapy program on the recovery of walking ability during subacute stroke rehabilitation. The primary hypothesis was that non-ambulatory patients who regularly utilized an exoskeleton during their physical therapy sessions would have greater walking independence at discharge compared to patients who received standard physical therapy. The secondary objective was to evaluate the effect of exoskeleton-based physical therapy on additional walking and mobility outcomes (e.g., speed), leg motor impairment, balance, cognition, post-stroke depression, and quality of life, at discharge and after 6 months.

More at link.

 

No comments:

Post a Comment