Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, September 20, 2017

Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

I've written 29 posts on this since January 2013 and obviously still NO protocol has been written up. Incompetence in full force once again, not a problem for these researchers, only stroke survivors feel the results of this fucking incompetence.

Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke

Abstract

OBJECTIVE:

Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS+BCI, compared to sham rTMS+BCI, on motor recovery after stroke in subjects with lasting motor paresis.

APPROACH:

Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment.

MAIN RESULTS:

Motor improvements were observed in both real rTMS+BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group.

SIGNIFICANCE:

When combined, the results highlight the feasibility and efficacy of combined rTMS+BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS+BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as demonstrated by behavioral improvements for the sham rTMS+BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

KEYWORDS:

brain computer interface; functional MRI; rehabilitation; repetitive transcranial magnetic stimulation; stroke; upper extremity; virtual reality
PMID:
28914232
DOI:
10.1088/1741-2552/aa8ce3

No comments:

Post a Comment