http://www.tandfonline.com/doi/abs/10.1080/10749357.2017.1322249?
Pages 1-7 | Received 15 Dec 2016, Accepted 18 Apr 2017, Published online: 08 May 2017
Abstract
Background:
Lower extremity muscle weakness is a primary contributor to post-stroke
dysfunction. Resistance training is an effective treatment for
hemiparetic weakness and improves walking performance. Post-stroke
subject characteristics that do or do not improve walking speed
following resistance training are unknown.
Objective: The purpose of this paper was to describe baseline characteristics, as well as responses to training, associated with achieving a minimal clinically important difference (MCID) in walking speed (≥0.16 m/s) following Post-stroke Optimization of Walking Using Explosive Resistance (POWER) training.
Methods: Seventeen participants completed 24 sessions of POWER training, which included intensive progressive leg presses, jump training, calf raises, sit-to-stands, step-ups, and over ground fast walking. Outcomes included SSWS, FCWS, DGI, FMA-LE, 6-MWT, paretic knee power, non-paretic knee power, and paretic step ratio.
Results: Specific to those who reached MCID in SSWS (e.g. “responders”), significant improvements in SSWS, FCWS, 6-MWT, paretic knee power, and non-paretic knee power was realized. Paretic knee power and non-paretic knee power significantly improved in those who did not achieve MCID for gait speed (e.g. “non-responders”).
Conclusion: The potential for POWER training to enhance general locomotor function was confirmed. Baseline paretic knee strength/power may be an important factor in how an individual responds to this style of training. The lack of change within the non-responders emphasizes the contribution of factors other than lower extremity muscle power improvement to locomotor dysfunction.
Objective: The purpose of this paper was to describe baseline characteristics, as well as responses to training, associated with achieving a minimal clinically important difference (MCID) in walking speed (≥0.16 m/s) following Post-stroke Optimization of Walking Using Explosive Resistance (POWER) training.
Methods: Seventeen participants completed 24 sessions of POWER training, which included intensive progressive leg presses, jump training, calf raises, sit-to-stands, step-ups, and over ground fast walking. Outcomes included SSWS, FCWS, DGI, FMA-LE, 6-MWT, paretic knee power, non-paretic knee power, and paretic step ratio.
Results: Specific to those who reached MCID in SSWS (e.g. “responders”), significant improvements in SSWS, FCWS, 6-MWT, paretic knee power, and non-paretic knee power was realized. Paretic knee power and non-paretic knee power significantly improved in those who did not achieve MCID for gait speed (e.g. “non-responders”).
Conclusion: The potential for POWER training to enhance general locomotor function was confirmed. Baseline paretic knee strength/power may be an important factor in how an individual responds to this style of training. The lack of change within the non-responders emphasizes the contribution of factors other than lower extremity muscle power improvement to locomotor dysfunction.
No comments:
Post a Comment