Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, December 29, 2016

Killing old cells to stay young

Does this also need to occur in the brain? Ask your doctor if Cliff Clavin in Cheers was correct about

The Buffalo Theory of neurons?

http://science.sciencemag.org/content/354/6319/1518.full

Killing old cells to stay young


Removing worn-out cells might delay the buildup of artery-clogging plaques.
PHOTO: NEPHRON/CREATIVE COMMONS

Pricey plastic surgery won't stop you from getting old. Nor will dietary supplements, testosterone injections, or those wrinkle creams that imply they'll make you look 21 again. But this year, researchers demonstrated one way to postpone some ravages of time—at least in mice. When they selectively weeded out rundown cells, the animals lived longer and remained healthier as they aged.
The infirm cells the scientists targeted had undergone a partial shutdown known as senescence, in which they lose the ability to divide. Researchers think senescence may prevent worn-out, cancer-prone cells from initiating tumors, but it may also promote aging. As we grow older, more and more cells stop reproducing, potentially robbing our tissues of the ability to replace dead or injured cells. Senescent cells also discharge molecules that can cause problems such as abnormal cell growth and inflammation.
The first study showing that eliminating senescent cells can produce health and longevity benefits, at least in middle-aged mice, came out in February. Deterioration of the animals' hearts and kidneys slowed, and they didn't sprout tumors until later in their lives. Some age-related declines, such as in memory and muscle coordination, didn't abate. Nonetheless, the rodents outlived their contemporaries by more than 20%.
In October, the same research team took aim at senescent cells from the immune system that amass in artery-clogging plaques and may drive their formation. Removing these cells from mice that are prone to atherosclerosis reduced the amount of fatty buildup in the animals' arteries by 60%, even though the rodents gorged on fat-laden food.
The multibillion-dollar question: Will taking out senescent cells help humans stay young longer? Both studies used genetically modified mice that clear away their senescent cells in response to a particular compound—a technique that isn't feasible in humans. But researchers have created several so-called senolytic drugs that slay senescent cells without genetic tinkering. Next year, scientists will launch the first clinical trial of one of those drugs in people who have arthritis. –Mitch Leslie

References

D. J. Baker et al., “Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders,” Nature 479, 232 (2 November 2016)
D. J. Baker et al., “Naturally occurring p16Ink4a-positive cells shorten healthy lifespan,,” Nature 530, 184 (11 February 2016)
B. G. Childs et al., “Senescent intimal foam cells are deleterious at all stages of atherosclerosis,” News from Science 354, 472 (28 October 2016)

No comments:

Post a Comment