Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, January 25, 2019

Blood Test May Predict Alzheimer’s Progression

With your very likely chance of getting this, shouldn't your doctor be testing for this and preparing Alzheimers prevention protocols for you to use? Isn't that your doctors' responsibility?  Yes this is in familial but I bet it works for regular Alzheimers too, that is also your doctors' responsibility to know about. 

YOUR DOCTORS' RESPONSIBILITY!

The reason you need dementia prevention: 

1. A documented 33% dementia chance post-stroke from an Australian study?   May 2012.

2. Then this study came out and seems to have a range from 17-66%. December 2013.

3. A 20% chance in this research.   July 2013.

4. Dementia Risk Doubled in Patients Following Stroke September 2018 

5. Parkinson’s Disease May Have Link to Stroke March 2017

Blood Test May Predict Alzheimer’s Progression

Test detects familial Alzheimer's damage before symptoms appear

  • by Contributing Writer, MedPage Today
A blood test predicted disease progression and brain neurodegeneration at very early stages of familial Alzheimer's disease, researchers reported.
Serum neurofilament light chain (NfL) levels correlated with NfL levels in the cerebrospinal fluid (CSF) and were elevated at pre-symptomatic stages of familial Alzheimer's disease, according to Mathias Jucker, PhD, of the German Center for Neurodegenerative Diseases in Tübingen, Germany, and colleagues.
Up to 16 years before the calculated onset of dementia symptoms, there were noticeable changes in blood, they reported in Nature Medicine.
The rate of change of serum NfL was key: "It is not the absolute neurofilament concentration but its temporal evolution which is meaningful and allows predictions about the future progression of the disease," Jucker said in a statement.
These findings add to a growing body of evidence suggesting NfL might be used clinically as a blood biomarker for Alzheimer's and other neurodegenerative diseases.
"This is something that would be easy to incorporate into a screening test in a neurology clinic," co-author Brian Gordon, PhD, of Washington University in St. Louis, said in a statement. "We validated it in people with Alzheimer's disease because we know their brains undergo lots of neurodegeneration, but this marker isn't specific for Alzheimer's. High levels could be a sign of many different neurological diseases and injuries."
When brain neurons are damaged or dying, they release the NfL protein, which leaks into CSF and blood. Rising levels of NfL in CSF signal neuron loss in stroke, traumatic brain injury, Alzheimer's, multiple sclerosis, and other neurodegenerative conditions.
This study assessed 405 people from the Dominantly Inherited Alzheimer's Network (DIAN), a consortium led by Washington University. Participants in DIAN carry one of the gene mutations (APP, PSEN1, PSEN2) known to cause dominantly inherited Alzheimer's disease. The cohort offers a unique opportunity for researchers to develop accurate predictions about whether and when a family member will develop dementia: a parent with one of these mutations has a 50% chance of passing the genetic error to a child, and a child who inherits a variant is all but guaranteed to develop symptoms of dementia around the same age as the parent.
The researchers examined 243 DIAN participants who carried an early-onset genetic variant and 162 unaffected relatives as controls. DIAN participants were evaluated at baseline and at subsequent follow-up visits (annually to every third year) with blood and CSF tests, imaging, and cognitive tests.
NfL levels in CSF (n=187) and serum (n=405) correlated with one another and were elevated before dementia symptoms occurred. Longitudinal, within-person analysis of serum NfL (n=196) confirmed this elevation, and showed that the rate of change of serum NfL could discriminate mutation carriers from non-mutation carriers almost a decade earlier than cross-sectional absolute NfL levels -- 16.2 versus 6.8 years before the estimated symptom onset.
The serum NfL rate of change peaked in participants converting from the pre-symptomatic to the symptomatic stage of Alzheimer's and was associated with cortical thinning on MRI. Serum NfL also predicted cognitive changes assessed by the Mini–Mental State Examination and Logical Memory test over a 2-year period.
"These results suggest that in the context of Alzheimer's disease pathology -- currently measured by CSF amyloid or amyloid PET, but potentially in the future by blood amyloid -- serum NfL could prognosticate the rate of disease progression and potentially be utilized in clinical trials as a surrogate endpoint," observed Michelle Mielke, PhD, of the Mayo Clinic in Rochester, Minnesota, who was not involved in the research.
"The authors correctly point out that additional studies are needed over the clinical and pathological course of sporadic Alzheimer's patients, especially because sporadic Alzheimer's patients are older and are more likely to have co-existent vascular and other brain pathology which can also impact serum NfL levels," Mielke told MedPage Today.
"Regardless, the current findings are promising and elegantly highlight the potential clinical use of this blood-based marker," she said.
Future analyses are needed to more accurately pinpoint when serum NfL rate of change is a better predictor of neurodegeneration and cognitive decline than absolute NfL, Jucker noted. And because neurofilaments also accumulate in the blood during the course of other neurodegenerative disorders, this test is only conditionally suitable for diagnosing Alzheimer's. "However, the test accurately shows the course of the disease and is therefore a powerful instrument for investigating novel Alzheimer's therapies in clinical trials," he said.
Data collection and sharing for this project was supported by DIAN (funded by the National Institute on Aging) and the German Center for Neurodegenerative Diseases. Additional support came from the National Institutes of Health, the National Science Foundation, the Swiss National Science Foundation, the National Institute for Health Research University College London Hospitals Biomedical Research Centre, and the MRC Dementias Platform U.K.
Researchers reported relationships with Cognition Therapeutics, Biogen, GlaxoSmithKline, Illumina, Eisai, AbbVie, Pfizer, Denali Therapeutics, Genentech, Roche Diagnostics, Araclon/Grifols, and DiamiR.

No comments:

Post a Comment