Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, January 27, 2019

Mice regrow brain tissue after stroke with bioengineered gel

If your doctors and stroke hospital are not jumping for joy AND engaging with these researchers to create human trials. Then you need to have everyone in the stroke hospital fired.   I take no prisoners with incompetent staff.

Mice regrow brain tissue after stroke with bioengineered gel

Photomicrograph of tissue that has grown into the stroke cavity in the stroke-healing gel. The red tubes are blood vessels. They are growing into the site of the stroke in the center of the image. The green filaments are axons. These grow along the blood vessels as they enter the gel and infarct area. The blue ovoids are cell nuclei in the tissue. Credit: UCLA Health
In a first-of-its-kind finding, a new stroke-healing gel helped regrow neurons and blood vessels in mice with stroke-damaged brains, UCLA researchers report in the May 21 issue of Nature Materials.
"We tested this in laboratory to determine if it would repair the in a model of , and lead to recovery," said Dr. S. Thomas Carmichael, Professor and Chair of neurology at UCLA. "This study indicated that new can be regenerated in what was previously just an inactive brain scar after stroke."
The results suggest that such an approach may someday be a new therapy for stroke in people, said Dr. Tatiana Segura, a former Professor of Chemical and Biomolecular Engineering at UCLA who is now a professor at Duke University. Carmichael and Segura collaborated on the study.
The brain has a limited capacity for recovery after stroke and other diseases. Unlike some other organs in the body, such as the liver or skin, the brain does not regenerate new connections, blood vessels or new structures. Tissue that dies in the brain from stroke is absorbed, leaving a cavity, devoid of , neurons or axons, the thin nerve fibers that project from neurons.
To see if healthy tissue surrounding the cavity could be coaxed into healing the stroke injury, Segura engineered a gel to inject into the stroke cavity that thickens to mimic the properties of brain tissue, creating a scaffolding for new growth.
The gel is infused with molecules that stimulate blood vessel growth and suppress inflammation, since inflammation results in scars and impedes regrowth of functional tissue.
After 16 weeks, stroke cavities in mice contained regenerated brain tissue, including new neural networks—a result that had not been seen before. The mice with new neurons showed improved motor behavior, though the exact mechanism wasn't clear.
"The new axons could actually be working," said Segura. "Or the new tissue could be improving the performance of the surrounding, unharmed brain tissue."
The gel was eventually absorbed by the body, leaving behind only new tissue.
This research was designed to explore recovery in acute stroke, or the period immediately following stroke—in mice, that is five days; in humans, that is two months. Next, Carmichael and Segura are determining if brain tissue can be regenerated in mice long after the stroke injury. More than 6 million Americans are living with the long-term outcomes of stroke, known as chronic stroke.

Explore further
Discovery could lead to better recovery after stroke


More information: Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke, Nature Materials (2018). nature.com/articles/doi:10.1038/s41563-018-0083-8
Provided by University of California, Los Angeles

No comments:

Post a Comment