Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, January 24, 2019

Dawdling Diminishes Reperfusion in Stroke Thrombectomy

Good to know that blaming the patient is the height of stroke treatment. Rather than the total fucking crapola that stroke doctors do that only gets 10% fully recovered. 'You didn't have the exact make and model of stroke that matches what we can treat, and not very successful treatment at that.'

Dawdling Diminishes Reperfusion in Stroke Thrombectomy


Door-to-puncture delays still no good, despite DAWN, DEFUSE 3

  • by Reporter, MedPage Today/CRTonline.org
Reperfusion success after mechanical thrombectomy for a large vessel occlusion dimmed with every passing hour from stroke endovascular center arrival to groin puncture, according to the HERMES group.
The odds dropped the longer to groin puncture from admission (OR 0.78 per hour, 95% CI 0.64-0.95) or first imaging (OR 0.74 per hour, 95% CI 0.59-0.93), according to Romain Bourcier, MD, PhD, of the University Hospital of Nantes, France, and collaborators.
Their meta-analysis of pooled patient-level data from the thrombectomy arms of seven randomized trials (n=728) was published online in JAMA Neurology.
"Our results could be confusing compared with the results of the late time studies [DAWN and DEFUSE 3]. Importantly, even if the reperfusion rate declines as time elapses, patients recanalized in later times continue to have better clinical outcome compared with those without reperfusion," the investigators emphasized.
In 2018, based on DAWN and DEFUSE 3 data showing benefits to late thrombectomy, U.S. guidelines expanded the window for endovascular stroke therapy from 6 hours to 24 hours after the patient was last known to be well.
"The bottom line is that time is brain -- still. All the publicity around longer time windows may have sent the wrong message to the troops out there. Yes, we can treat some patients late and get success. But for the majority of patients, early is better, and the best chance for success is with early, timely intervention," commented Patrick Lyden, MD, of Cedars-Sinai Medical Center in Los Angeles, who was not part of the research group.
Cutting down modifiable in-hospital delays is still crucial, the investigators said, though they said they couldn't tell from their data if it was best to start by optimizing patient transfer, imaging, or procedural factors.
The HERMES participants included in the meta-analysis were patients with M1/M2 or intracranial carotid artery occlusions. The group was age 65.4 years on average and 47.4% women. Successful reperfusion was defined as an adjusted mTICI score of 2b/3 at the end of thrombectomy.
"While the probability of successful reperfusion decreased in our study with all intervals, the association was much more pronounced when arrival at the emergency department or imaging to groin puncture were considered compared with onset to groin puncture," Bourcier's group noted.
In fact, the study population showed no relationship between time from stroke onset to arterial access and successful reperfusion. The authors said this was "possibly because several of the trials used imaging selection criteria to choose patients (thereby selecting those more likely to be slow progressors), and one trial examined an extended 12-hour eligibility window from stroke onset."
They acknowledged that the trials they pooled differed in study entry criteria and imaging modalities used. Moreover, they lacked any information on thrombectomy procedural details, such as device selection.
“Patients with favorable imaging profiles had very good reperfusion rates in DEFUSE 3 and DAWN indicating that extended time is not a barrier to high repulsion rates in well-selected patients,” according to Gregory Albers, MD, of California’s Stanford University. “Of course, sooner is always better, but when the patient does not arrive early we need imaging to determine if they are still a good candidate for thrombectomy.”
The HERMES Collaboration was funded by a grant from Medtronic to the University of Calgary.
Bourcier disclosed no conflicts of interest.
Study co-authors reported numerous ties to industry.
last updated

No comments:

Post a Comment