Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, April 15, 2021

Comparison of neuromuscular and cardiovascular exercise intensity and enjoyment between standard of care, off-the-shelf and custom active video games for promotion of physical activity of persons post-stroke

 I see no specific recommendations or protocols on what should occur post stroke to get recovered, so useless.

Comparison of neuromuscular and cardiovascular exercise intensity and enjoyment between standard of care, off-the-shelf and custom active video games for promotion of physical activity of persons post-stroke

Abstract

Background

Active video games have been embraced for the rehabilitation of mobility and promotion of physical activity for persons post-stroke. This study seeks to compare carefully matched standard of care stepping activities, off-the-shelf (non-custom) active video games and custom active video games that are either self-paced or game-paced for promoting neuromuscular intensity and accuracy, cardiovascular intensity, enjoyment and perceived effort.

Methods

Fifteen persons (ages 38–72) with mild to moderate severity in the chronic phase post-stroke (average 8 years) participated in a single group counter balanced repeated measures study. Participants were included if they were greater than 6 months post-stroke, who could walk 100 feet without assistance and stand unsupported for three continuous minutes. They were excluded if they had cardiac, musculoskeletal or neurologic conditions that could interfere with repeated stepping and follow instructions. In a single session located in a laboratory setting, participants executed for 8.5 min each: repeated stepping, the Kinect-light race game, two custom stepping games for the Kinect, one was repeated and self-paced and the other was random and game paced. Custom video games were adjusted to the participants stepping volume. Ten-minute rest periods followed the exercise during which time participants rested and completed the PACES an enjoyment questionnaire. Participants were instrumented with a metabolic cart and heart rate sensor for collection of cardiovascular intensity (METs and % of max HR) data. Stepping frequency, accuracy and pattern were acquired via video. Data were analyzed using a RMANOVA and post-hoc comparison with a Holm's/Sidak correction.

Results

Neuromuscular intensity (repetitions) was significantly greater for the off-the-shelf and self-paced custom game, however accuracy was greater for the custom games. Cardiovascular intensity for all activities took place in the moderate intensity exercise band. Enjoyment (measured with a questionnaire and rankings) was greater for the custom active video games and rate of perceived exertion was lower for the custom active video games.

Conclusions

Custom active video games provided comparable intensity but better accuracy, greater enjoyment and less perceived exertion than standard of care stepping activities and a carefully matched off-the-shelf (non-custom) video game. There were no differences between the game-paced and self-paced custom active video games.

Trial registration: NCT04538326.

Background

Activity and participation are often limited for persons-post stroke. Mobility problems are reported by 58% of people in chronic stage after stroke, fatigue in 52%, and falls in 44% [1]. Low cardiorespiratory fitness and other impairments, such as decreased balance and muscle strength interact to drive post-stroke activity limitations and participation restriction [2]. People post-stroke may only manage to walk short distances, walk slowly, fatigue more often during everyday activities and are at greater risk for falls. Their sedentary lifestyle is related not only to decreased walking ability, but it also increases risk for another stroke and other cardio-vascular diseases, depression, psychosocial disfunctions and decreased quality of life [3]. Physical exercise programmes may serve to increase physical fitness and mobility of people post-stroke [2, 4].

Active video games (AVGs) became available for movement focused rehabilitation when gaming consoles such as the Play Station II (PS2) with the Eye Toy camera, the Nintendo Wii and the Microsoft Xbox with the Kinect camera were trialed by clinicians and tested by researchers [5,6,7]. Analyses of the non-custom AVGs associated with the consoles identified elements of motor learning and therapeutic exercise in order to guide the application of AVGs into physical therapy practice, as well as rehabilitation research [8,9,10,11]. Recent surveys of virtual reality and AVGs confirm that AVGs have become part of the repertoire of rehabilitation tools used for persons post-stroke. Physical and occupational therapists, surveyed about virtual reality and video games in both in Canada and the United States, report primarily using non-custom AVGs for commercial consoles such as the Nintendo Wii and the Microsoft Kinect to treat balance and fitness for persons post-stroke. [12] Boyne and colleagues [13] reported AVGs were used to promote aerobic exercise for persons post-stroke in a variety of clinical settings. AVGs appear to meet the need for rehabilitation of mobility and fitness deficits experienced by persons post-stroke.

Evidence to support these non-custom AVGs has been increasing with their potential application for rehabilitation of upper limb use, [14] balance and mobility [15] as well as promotion of physical activity (PA) [16, 17] for persons post-stroke. There has also been an interest in developing active custom games for upper limb use [18] and balance [19,20,21]. A rationale often proposed for incorporating AVGs into stroke rehabilitation is their potential to increase participant motivation. Several elements of AVGs may account for increasing or be associated with motivation; these include game mechanics (such as scoring), performance feedback, “the right level of challenge” and enjoyment [22]. In persons post-stroke in an inpatient setting who played upper limb games using a manipulandum to control a game displayed on a tv, the use of feedback was shown to be superior in improving movement speed and smoothness to games that did not provide performance feedback. Importantly, they also had greater motivation (measured with the interest and enjoyment subscale of the Intrinsic Motivation Inventory) with the game play [23]. Game mechanics that involved scoring and “operant conditioning” both yielded higher performance metrics when playing an upper limb labyrinth game with those features [24].

Enjoyment is proposed as an important construct to recommend AVG play [25]. It has been measured by the same group of investigators while persons post-stroke: (1) interacted with the PS2 Eye Toy, [5] (2) compared enjoyment while playing the PS2 and the Wii [26] and (3) played Kinect Sports and Adventure games [11]. Across all three studies, enjoyment was reported by persons post-stroke. Enjoyment was also identified as an important construct linking engagement for motor learning in virtual environments [27]. It is speculated that enjoyment is a factor that also promotes motivation and may lead to sustained and intense activity required for neural, musculoskeletal and cardiovascular plasticity required for stroke rehabilitation. In fact, several groups have shown that persons post-stroke exercising in virtual environments and AVGs achieve high levels of repetitions [28] and a higher number of repetitions (a measure of intensity) compared to standard therapy [29].

While the non-custom AVGs have shown promise and they are appealing because of their low-cost, high quality graphics and variety, they have several important limitations for incorporating them into therapy. Often, they are not user-centered, do not meet therapeutic goals, nor provide performance metrics, nor promote desirable movement patterns [30, 31]. One of the consistent limitations, of these off-the-shelf consoles and their games, reported by both clinicians and persons post-stroke, is the lack of control in adjusting exercise parameters such as speed or difficulty [32]. The lack of game control is especially true for game-paced, rather than player or self-paced games. AVGs and virtual environments may also not reliably promote optimal movement patterns [33,34,35]. This is particularly important for persons post-stroke who exhibit asymmetrical movements. The promise that some of these limitations could be addressed with games that were specifically designed for rehabilitation was heralded with the open development kit of the Kinect (STK). The combination of markerless motion capture with customized software could overcome some of the limitations of non-custom off-the shelf games as well the cost of more specialized systems. Several groups have developed custom games with the Kinect primarily for balance that allow customization and clinician control and have been shown to efficacious in rehabilitation post stroke [19] or superior to off -the-shelf analogs in older adults [36]. There are however, to our knowledge no studies that carefully compare movement performance, energetics and enjoyment of off-the-shelf video games with custom games as well as standard of care activities for persons with stroke.

Therefore, in this study we sought to compare if carefully matched standard of care activities and off-the-shelf AVG with customized AVGs produced a desirable exercise intensity and player experience for persons post-stroke. The specific purpose of this study was to determine if: (1) Movement outcomes of neuromuscular intensity (repetitions) and movement accuracy were superior when playing an off-the-shelf AVG, compared to custom AVGs or standard of care therapy, (2) Cardiovascular intensity outcomes of (METs and % of HRmax) were superior when playing an off-the-shelf AVGs, compared to custom AVGs or standard of care therapy, (3) enjoyment, game preference and perceived effort differed when playing an off-the-shelf AVG, compared to custom AVGs or standard of care therapy and (4) there was a difference in neuromuscular and cardiovascular intensity as well as enjoyment and game preference between the two customized AVGs that are self-paced compared to game-paced. We hypothesized that neuromuscular and cardiovascular intensity, would differ between custom AVGs, off-the shelf AVGs and standard of care; and that enjoyment would be greater and perceived effort lower for the custom AVGs compared to the off-the-shelf AVG and standard of care.

More at link.

 

No comments:

Post a Comment