Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, October 15, 2020

Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning

 And just what the fuck is your patients response when you tell then that the prediction is that they won't recover? Or are you fucking lying to them and blithely telling them that neuroplasticity will get them recovered? Is your doctor telling you they have no protocols for recovery and you will have to figure out all this on your own? Or are they like my doctor who told me nothing and knew nothing about stroke recovery? Proven by his writing three prescriptions of E.T.(Evaluate and Treat) to the OT, PT and ST. Doing that again to me will result in calling the president and demanding that doctor be fired for incompetence.  

I expect my doctors to know the EXACT ins and outs of stroke recovery, anything less and they are incompetent. They should know more than me(Good luck with that.)

Multimodal Predictive Modeling of Endovascular Treatment Outcome for Acute Ischemic Stroke Using Machine-Learning

Originally publishedhttps://doi.org/10.1161/STROKEAHA.120.030287Stroke. ;0

Background and Purpose:

This study assessed the predictive performance and relative importance of clinical, multimodal imaging, and angiographic characteristics for predicting the clinical outcome of endovascular treatment for acute ischemic stroke.

Methods:

A consecutive series of 246 patients with acute ischemic stroke and large vessel occlusion in the anterior circulation who underwent endovascular treatment between April 2014 and January 2018 was analyzed. Clinical, conventional imaging (electronic Alberta Stroke Program Early CT Score, acute ischemic volume, site of vessel occlusion, and collateral score), and advanced imaging characteristics (CT-perfusion with quantification of ischemic penumbra and infarct core volumes) before treatment as well as angiographic (interval groin puncture-recanalization, modified Thrombolysis in Cerebral Infarction score) and postinterventional clinical (National Institutes of Health Stroke Scale score after 24 hours) and imaging characteristics (electronic Alberta Stroke Program Early CT Score, final infarction volume after 18–36 hours) were assessed. The modified Rankin Scale (mRS) score at 90 days (mRS-90) was used to measure patient outcome (favorable outcome: mRS-90 ≤2 versus unfavorable outcome: mRS-90 >2). Machine-learning with gradient boosting classifiers was used to assess the performance and relative importance of the extracted characteristics for predicting mRS-90.

Results:

Baseline clinical and conventional imaging characteristics predicted mRS-90 with an area under the receiver operating characteristics curve of 0.740 (95% CI, 0.733–0.747) and an accuracy of 0.711 (95% CI, 0.705–0.717). Advanced imaging with CT-perfusion did not improved the predictive performance (area under the receiver operating characteristics curve, 0.747 [95% CI, 0.740–0.755]; accuracy, 0.720 [95% CI, 0.714–0.727]; P=0.150). Further inclusion of angiographic and postinterventional characteristics significantly improved the predictive performance (area under the receiver operating characteristics curve, 0.856 [95% CI, 0.850–0.861]; accuracy, 0.804 [95% CI, 0.799–0.810]; P<0.001). The most important parameters for predicting mRS 90 were National Institutes of Health Stroke Scale score after 24 hours (importance =100%), premorbid mRS score (importance =44%) and final infarction volume on postinterventional CT after 18 to 36 hours (importance =32%).

Conclusions:

Integrative assessment of clinical, multimodal imaging, and angiographic characteristics with machine-learning allowed to accurately predict the clinical outcome following endovascular treatment for acute ischemic stroke. Thereby, premorbid mRS was the most important clinical predictor for mRS-90, and the final infarction volume was the most important imaging predictor, while the extent of hemodynamic impairment on CT-perfusion before treatment had limited importance.

 

No comments:

Post a Comment