Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, June 1, 2021

Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial

And you really think your insurance will pay for this? And your hospital has such machines? No objective results given so this doesn't even get you 100% recovered.

The average cost per patient was USD 1.108 for a treatment course consisting of 3 minute sessions, whereas the price was USD 1.844 for the 37 minute, standard TMS protocol. The average cost per remission was USD 3.695 for iTBS and USD 6.146 for standard TMS – which is a difference of USD 2.451. According to the cost analysis, the reasons for these significant cost-savings associated with the short 3 minute iTBS stimulation can be attributed to the shorter treatment sessions and increase in treatment capacity.

Augmented efficacy of intermittent theta burst stimulation on the virtual reality-based cycling training for upper limb function in patients with stroke: a double-blinded, randomized controlled trial

Abstract

Background

Virtual reality and arm cycling have been reported as effective treatments for improving upper limb motor recovery in patients with stroke. Intermittent theta burst stimulation (iTBS) can increase ipsilesional cortical excitability, and has been increasingly used in patients with stroke. However, few studies examined the augmented effect of iTBS on neurorehabilitation program. In this study, we investigated the augmented effect of iTBS on virtual reality-based cycling training (VCT) for upper limb function in patients with stroke.

Methods

In this randomized controlled trial, 23 patients with stroke were recruited. Each patient received either 15 sessions of iTBS or sham stimulation in addition to VCT on the same day. Outcome measures were assessed before and after the intervention. Primary outcome measures for the improvement of upper limb motor function and spasticity were Fugl-Meyer Assessment-Upper Extremity (FMA-UE) and Modified Ashworth Scale Upper-Extremity (MAS-UE). Secondary outcome measures for activity and participation were Action Research Arm Test (ARAT), Nine Hole Peg Test (NHPT), Box and Block Test (BBT) and Motor Activity Log (MAL), and Stroke Impact Scale (SIS). Wilcoxon signed-rank tests were performed to evaluate the effectiveness after the intervention and Mann–Whitney U tests were conducted to compare the therapeutic effects between two groups.

Results

At post-treatment, both groups showed significant improvement in FMA-UE and ARAT, while only the iTBS + VCT group demonstrated significant improvement in MAS-UE, BBT, NHPT, MAL and SIS. The Mann–Whitney U tests revealed that the iTBS + VCT group has presented greater improvement than the sham group significantly in MAS-UE, MAL-AOU and SIS. However, there were no significant differences in the changes of the FMA-UE, ARAT, BBT, NHPT and MAL-QOM between groups.

Conclusions

Intermittent TBS showed augmented efficacy on VCT for reducing spasticity, increasing actual use of the affected upper limb, and improving(Both are weasel words signifying nothing objective.)participation in daily life in stroke patients. This study provided an integrated innovative intervention, which may be a promising therapy to improve upper limb function recovery in stroke rehabilitation. However, this study has a small sample size, and thus a further larger-scale study is warranted to confirm the treatment efficacy.

Trial registration This trial was registered under ClinicalTrials.gov ID No. NCT03350087, retrospectively registered, on November 22, 2017

Background

Stroke is a leading cause of upper limb (UL) motor impairments. UL impairment commonly persists after the acute phase, resulting in long-term disability and decreased health-related life quality [1]. Despite receiving traditional neurorehabilitation programs, 50–60% of post-stroke patients remained functional motor limitations at variable degrees [2]. Various interventions and rehabilitation protocols have been developed in recent decades to enhance motor recovery and improve the quality of life in post-stroke patients. These rehabilitation programs include constraint-induced movement therapy, mirror therapy, and virtual reality (VR). Interventions include non-invasive brain stimulation (NIBS) and laser therapy.

Holden et al. identified repetition, positive feedback and patient’s motivation as the three key elements for post-stroke patients to achieve optimal functional recovery [3]. Therefore, this study combines VR with arm cycling to attain those elements. With the advancement of technology, VR has been increasingly utilized to treat neurological disorders. VR provides real-time somatosensory feedback to enhance motor control and learning [4], and initiates motivation for patients to endure repeated practice. Additionally, arm cycling was selected for the current rehabilitation program because it involves repetitive movement of bilateral upper limbs. Previous studies have demonstrated that bilateral extremities training induces interhemispheric facilitation [5], and that a repetitive training program provides additional benefit for functional recovery of upper limbs [6, 7]. Besides, unilateral virtual reality-based cycling training (VCT) was difficult for patients with hemiplegia. Taken together, this study applied bilateral VCT program for UL rehabilitation.

Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, has been increasingly reported as a promising intervention that safely improves motor performance in the affected UL of stroke patients. Although the precise underlying mechanism remains unclear, rTMS is generally considered effective in improving functional outcome in patients with stroke by modulating motor cortical excitability and inducing reorganization of neural networks [8]. Since rTMS provides an environment to enhance neuroplasticity instead of skill acquisition, previous studies indicated combination therapy with rTMS and rehabilitative training improve motor functions to an extent that could not be attained by rTMS alone [9, 10]. For this reason, rTMS is often combined with motor behavioral intervention to enhance motor function. Intermittent theta burst stimulation (iTBS) is a variant of rTMS that may provide equivalent or even better efficacy. Therefore, this study explores the augmented efficacy provided by iTBS on the neurorehabilitation program to improve UL function.

Theta burst stimulation (TBS) is a novel stimulation protocol of rTMS that requires a lower stimulation intensity within a shorter time to achieve therapeutic effect in post-stroke patients [11]. Previous studies have indicated that TBS evoked comparable or even greater motor-evoked potentials (MEPs) [12] with longer-lasting effects than conventional rTMS methods [11]. Di Pino et al. proposed the bimodal balance-recovery model, integrating the interhemispheric competition and vicariation effect over the intact hemisphere, and suggested that stimulation protocol should be individualized according to the structural reserve [13]. The interhemispheric competition model was thought to predict recovery better in post-stroke patients with high structural reserve, while the vicariation theory is more relevant in post-stroke patients with low structural reserve. However, due to variable extent of residual neuronal networks, iTBS is generally applied to the ipsilesional primary motor cortex to facilitate cortical excitability, while continuous TBS (cTBS) is used to suppress the cortical excitability of the contralesional site based on the interhemispheric competition model [11]. The interhemispheric competition model indicates that cortical excitability decreases in the affected hemisphere following stroke, while transcallosal inhibitory signals from the unaffected hemisphere increase due to cortical hyperexcitability [14]. The increased cortical excitability in the intact hemisphere results in suppression of the ipsilesional hemisphere, which further leads to poor motor recovery in post-stroke patients [15]. Ward et al. found that the interhemispheric inhibition decreases with time, suggesting that cTBS has limited effect in stroke patients during chronic stage. Additionally, a recent meta-analysis revealed that iTBS has a better effect than cTBS for UL motor recovery in patients with stroke [16]. Therefore, iTBS was administered over the primary motor cortex of the ipsilesional hemisphere to assess its efficacy for improving UL function.

VCT aims to target the peripheral mechanisms of stroke recovery, while iTBS aims toward the central mechanisms by modulating cortical excitability [8]. Virtual reality also targets the central mechanisms by inducing cortical reorganization [17], which may cause a synergistic effect when combined with iTBS. A previous study revealed that combining low-frequency rTMS with VR training could improve UL function and quality of life in patients with subacute stroke [18]. Therefore, this study added iTBS on VCT to examine whether combining these two neurotechnologies shows additive effects, and whether central stimulation augments the effect of peripheral training.

To the best of our knowledge, this is the first randomized controlled trial to propose an innovative protocol adding iTBS on VCT, and to investigate the augmented efficacy of iTBS on VCT for upper limb motor function in patients with stroke. A 15-day intervention was implemented. Based on previous researches, iTBS was reported to reduce spasticity [19, 20] and improve motor function [19, 21]. We hypothesized that post-stroke patients completing a 15-day treatment program with iTBS and VCT have better UL function than the patients receiving sham stimulation and VCT.

More at link.

 

No comments:

Post a Comment