Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, June 24, 2021

Improving Prehospital Stroke Diagnosis Using Natural Language Processing of Paramedic Reports

 Would you compare them to these faster objective diagnosis options.  Get human opinions out of it.

Maybe you want these much faster objective diagnosis options.

Hats off to Helmet of Hope - stroke diagnosis in 30 seconds; February 2017

 

Microwave Imaging for Brain Stroke Detection and Monitoring using High Performance Computing in 94 seconds March 2017

 

New Device Quickly Assesses Brain Bleeding in Head Injuries - 5-10 minutes April 2017

Ski-Mask Design AIR Coil Offers Whole-Brain Imaging Without Claustrophobia

The latest here:

 


Improving Prehospital Stroke Diagnosis Using Natural Language Processing of Paramedic Reports

Originally publishedhttps://doi.org/10.1161/STROKEAHA.120.033580Stroke. ;0:STROKEAHA.120.033580

Background and Purpose:

Accurate prehospital diagnosis of stroke by emergency medical services (EMS) can increase treatments rates, mitigate disability, and reduce stroke deaths. We aimed to develop a model that utilizes natural language processing of EMS reports and machine learning to improve prehospital stroke identification.

Methods:

We conducted a retrospective study of patients transported by the Chicago EMS to 17 regional primary and comprehensive stroke centers. Patients who were suspected of stroke by the EMS or had hospital-diagnosed stroke were included in our cohort. Text within EMS reports were converted to unigram features, which were given as input to a support-vector machine classifier that was trained on 70% of the cohort and tested on the remaining 30%. Outcomes included final diagnosis of stroke versus nonstroke, large vessel occlusion, severe stroke (National Institutes of Health Stroke Scale score >5), and comprehensive stroke center-eligible stroke (large vessel occlusion or hemorrhagic stroke).

Results:

Of 965 patients, 580 (60%) had confirmed acute stroke. In a test set of 289 patients, the text-based model predicted stroke nominally better than models based on the Cincinnati Prehospital Stroke Scale (c-statistic: 0.73 versus 0.67, P=0.165) and was superior to the 3-Item Stroke Scale (c-statistic: 0.73 versus 0.53, P<0.001) scores. Improvements in discrimination were also observed for the other outcomes.

Conclusions:

We derived a model that utilizes clinical text from paramedic reports to identify stroke. Our results require validation but have the potential of improving prehospital routing protocols.

 

No comments:

Post a Comment