Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, June 20, 2021

Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study

 Well then write this up as a proposed protocol and deliver it to all emergency rooms and intensive care centers all over the word. JUST WRITING THIS ARTICLE DOES NOTHING! Action is required and it is up to you to accomplish that action. You'd be fired in my laboratory if you didn't do that followup.

Intracranial pressure monitoring in patients with acute brain injury in the intensive care unit (SYNAPSE-ICU): an international, prospective observational cohort study

Summary

Background

The indications for intracranial pressure (ICP) monitoring in patients with acute brain injury and the effects of ICP on patients’ outcomes are uncertain. The aims of this study were to describe current ICP monitoring practises for patients with acute brain injury at centres around the world and to assess variations in indications for ICP monitoring and interventions, and their association with long-term patient outcomes.

Methods

We did a prospective, observational cohort study at 146 intensive care units (ICUs) in 42 countries. We assessed for eligibility all patients aged 18 years or older who were admitted to the ICU with either acute brain injury due to primary haemorrhagic stroke (including intracranial haemorrhage or subarachnoid haemorrhage) or traumatic brain injury. We included patients with altered levels of consciousness at ICU admission or within the first 48 h after the brain injury, as defined by the Glasgow Coma Scale (GCS) eye response score of 1 (no eye opening) and a GCS motor response score of at least 5 (not obeying commands). Patients not admitted to the ICU or with other forms of acute brain injury were excluded from the study. Between-centre differences in use of ICP monitoring were quantified by using the median odds ratio (MOR). We used the therapy intensity level (TIL) to quantify practice variations in ICP interventions. Primary endpoints were 6 month mortality and 6 month Glasgow Outcome Scale Extended (GOSE) score. A propensity score method with inverse probability of treatment weighting was used to estimate the association between use of ICP monitoring and these 6 month outcomes, independently of measured baseline covariates. This study is registered with ClinicalTrial.gov, NCT03257904.

Findings

Between March 15, 2018, and April 30, 2019, 4776 patients were assessed for eligibility and 2395 patients were included in the study, including 1287 (54%) with traumatic brain injury, 587 (25%) with intracranial haemorrhage, and 521 (22%) with subarachnoid haemorrhage. The median age of patients was 55 years (IQR 39–69) and 1567 (65%) patients were male. Considerable variability was recorded in the use of ICP monitoring across centres (MOR 4·5, 95% CI 3·8–4·9 between two randomly selected centres for patients with similar covariates). 6 month mortality was lower in patients who had ICP monitoring (441/1318 [34%]) than in those who were not monitored (517/1049 [49%]; p<0·0001). ICP monitoring was associated with significantly lower 6 month mortality in patients with at least one unreactive pupil (hazard ratio [HR] 0·35, 95% CI 0·26–0·47; p<0·0001), and better neurological outcome at 6 months (odds ratio 0·38, 95% CI 0·26–0·56; p=0·0025). Median TIL was higher in patients with ICP monitoring (9 [IQR 7–12]) than in those who were not monitored (5 [3–8]; p<0·0001) and an increment of one point in TIL was associated with a reduction in mortality (HR 0·94, 95% CI 0·91–0·98; p=0·0011).

Interpretation

The use of ICP monitoring and ICP management varies greatly across centres and countries. The use of ICP monitoring might be associated with a more intensive therapeutic approach and with lower 6-month mortality in more severe cases. Intracranial hypertension treatment guided by monitoring might be considered in severe cases due to the potential associated improvement in long-term clinical results.

Funding

University of Milano-Bicocca and the European Society of Intensive Care Medicine.
 

No comments:

Post a Comment