Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, February 23, 2019

The differences in sagittal plane whole-body angular momentum during gait between patients with hemiparesis and healthy people

Big words, zero knowledge of what it means.

The differences in sagittal plane whole-body angular momentum during gait between patients with hemiparesis and healthy people




Abstract

Regulation of whole-body angular momentum (WBAM) is essential for maintaining dynamic balance during gait. Patients with hemiparesis frequently fall toward the anterior direction; however, whether this is due to impaired WBAM control in the sagittal plane during gait remains unknown. The present study aimed to investigate the differences in WBAM in the sagittal plane during gait between patients with hemiparesis and healthy individuals. Thirty-three chronic stroke patients with hemiparesis and twenty-two age- and gender-matched healthy controls walked along a 7-m walkway while gait data were recorded using a motion analysis system and force plates. WBAM and joint moment were calculated in the sagittal plane during each gait cycle. The range of WBAM in the sagittal plane in the second half of the paretic gait cycle was significantly larger than that in the first and second halves of the right gait cycle in the controls (P = 0.015 and P = 0.011). Furthermore, multiple regression analysis revealed the slower walking speed (P < 0.001) and larger knee extension moment on the non-paretic side (P = 0.003) contributed to the larger range of WBAM in the sagittal plane in the second half of the paretic gait cycle. Our findings suggest that dynamic stability in the sagittal plane is impaired in the second half of the paretic gait cycle. In addition, the large knee extension moment on the non-paretic side might play a role in the dynamic instability in the sagittal plane during gait in patients with hemiparesis.

No comments:

Post a Comment